• 제목/요약/키워드: Existing buildings

검색결과 1,306건 처리시간 0.032초

Robustness Design For Tall Timber Buildings

  • Voulpiotis, Konstantinos;Frangi, Andrea
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.245-253
    • /
    • 2020
  • With the ever-increasing height of timber buildings, the complexity of timber as a structural material gives rise to behaviors not previously studied by engineers. An urgent call is needed regarding their performance in damage scenarios: activating alternative load paths in tall timber buildings is not the same as in tall buildings made with steel and concrete. In this paper we propose a robustness framework covering all building materials, whose application in timber may lead to new conceptual designs for the next generation of tall timber buildings. Qualitatively, the importance of building scale and the distinction between localized and systematic exposures are discussed, and how existing supertall structures can be an example for future generations of tall timber buildings. Quantitatively, the robustness index is introduced alongside a method to calculate the performance of a given building regarding robustness, in order to find the most cost-effective structural solutions for improved robustness. A three-level application recommendation is made, depending on the importance of the building in question. Primarily, the paper highlights the importance of conceptual design to achieve structural robustness and encourages the practicing engineering community to use the proposed framework to quantitatively come up with the new generation of tall timber buildings.

우리나라 건축물에 사용된 목재 수종의 변천 (Changes in the Species of Woods Used for Korean Ancient and Historic Architectures)

  • 박원규;이광희
    • 건축역사연구
    • /
    • 제16권1호
    • /
    • pp.9-28
    • /
    • 2007
  • We investigated the changes in the species of the woods used for Korean ancient and historic architectures, which include prehistoric excavated relics and existing wooden buildings in South Korea. The species data were collected from various sources such as excavation and repair reports, journal papers, and a few unpublished documents. We divided the building Periods as Paleolithic, Neolitic, Bronze Ages, Iron Age/Three Kingdoms, Koryo, Joseon (early, middle, late) and modem periods. In prehistoric periods, hardwoods were major species. Oak (Quercus spp.) woods dominated (94 percent in average); the others (5%) were Juglans mandshurica, Platycarya strobilacea, Castanea crenata, and few softwoods(1%). During Iron Age and Three Kingdom periods, oaks remained as a major species (57%) and others Platycarya strobilacea(21%), Castanea crenata(13%), and Pinus spp. (6%). The oak woods decreased in Koryo period and they occupied only 1.1%. Instead of oaks, pine (Pinus spp., 71%) and Zelkova serrata (22%) dominated in Koryo. In early and middle Joseon periods, pine woods (73%) remain as a major species and the others were oaks (14%) and Zelkova serrata (9%). As late Joseon came, the pine woods occupied more than 88%. In the late 19th and early 20th centuries, a few boreal species such as larch (Larix spp.) and spruce (Picea spp.), which grow in cold area, were found. We believe they were transported from northern Korea. The existing buildings in Korea are mainly from Joseon period and a few from late Koryo periods. During these periods, pine woods were used for most buildings. For such reason, pine woods were known as 'representative materials for historic buildings'. but earlier times, broad-leaved trees, i.e., oak and Zelkova woods were major materials. The changes in building materials resulted from both climate and human impacts. The dry climate and disturbed forests induce more pines in the mountains. We also compared the wood qualities of the species and found that Zelkova woods were superior ones and deserved more planting for future demands in the repair for historic buildings.

  • PDF

초고층 건축물 건설공사 시 화재안전계획 수립에 관한 연구 (A Study on the Fire Safety Plan for High-Rise Building Construction)

  • 함은구;정명진;이명구
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2012년 추계학술대회
    • /
    • pp.59-66
    • /
    • 2012
  • Recently buildings are constructed in larger and higher scales and becoming more complex. Every country in the world is competing to build high-rise buildings. Korea also has and is constructing high-rise buildings, like the 123story Jamsil Lotte Super Tower. However from small to large scale buildings and on construction sites there still are fire safety accidents that occur continuously. Therefore to improve fire safety plan, examining the actual fire safety management and understanding fire risk analysis Using Fire Modeling through Computer Simulation. Fire safety management plan related fire safety cases were collected an dan analyzed for the study. Also hazard analysis of High rise Buildings under fire compared with existing fire law sand regulations.

  • PDF

철골조학교(鐵骨組學校)의 설계요소(設計要素)에 관한 연구(硏究) (A Study on the Design Elements for Steel-Framed School Buildings)

  • 이재훈;황준근
    • 교육시설
    • /
    • 제11권1호
    • /
    • pp.47-57
    • /
    • 2004
  • The Architects' design process is subjective and mysterious'. If we can reveal this process, it will be very helpful to proceed similar design projects. In the aspect of steel production, Korea is a strong country, but in the aspect of steel usage, Korea does not show its impacts as compared with other countries'. Even though steel has many merits in design as well as in structure, in Korea we have not applied it as design elements. In this situation, the demand of steel in school buildings is increasing, but steel also is used only on the basis of the structural and material meaning. So this thesis tries to find design elements of steel structure buildings, which can be applied in school buildings, through the analysis of existing steel structure buildings and the characteristics of steel.

Seismic response control of buildings using shape memory alloys as smart material: State-of-the-Art review

  • Eswar, Moka;Chourasia, Ajay;Gopalakrishnan, N.
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.207-219
    • /
    • 2022
  • Seismic response control has always been a grave concern with the damage and collapse of many buildings during the past earthquakes. While there are several existing techniques like base isolation, viscous damper, moment-resisting beam-column connections, tuned mass damper, etc., many of these are succumbing to either of large displacement, near-fault, and long-period earthquakes. Keeping this viewpoint, extensive research on the application of smart materials for seismic response control of buildings was attempted during the last decade. Shape Memory Alloy (SMA) with its unique properties of superelasticity and shape memory effect is one of the smart materials used for seismic control of buildings. In this paper, an exhaustive review has been compiled on the seismic control applications of SMA in buildings. Unique properties of SMA are discussed in detail and different phases of SMA along with crystal characteristics are illustrated. Consequently, various seismic control applications of SMA are discussed in terms of performance and compared with prevalent base isolators, bracings, beam-column connections, and tuned mass damper systems.

Public Building Value Evaluation Using Contingent Valuation Method Based on Market Value Estimation

  • PARK, Jieun;YU, Jungho
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.367-370
    • /
    • 2015
  • Building deterioration reflects the degradation of basic building performance including structural performance, energy performance, durability, and safety, and it also includes perceived deterioration, which considers a user-based perspective. More than 50% of the existing buildings in Korea are over 15 years old and public buildings compose 2.5% of all buildings domestically. Therefore, there are several different problems, such as poor energy efficiency, structural performance, and safety. To address the challenges of increasing stock in deteriorated buildings, it is necessary to make decisions about reconstruction or renovation. In this study, we propose a new method to evaluate public building value with a contingent valuation method (CVM). By estimating willing-to-pay (WTP) from users of private buildings in similar situation with the public building, it is possible to compare market prices and calculate a correction factor to adjust the WTP data. Finally, we apply the correction factor to the WTP of a public building and estimate market price, willingness to pay (WTP). Finally, we apply the correction factor to willing to pay (WTP) of public building and estimate market price.

  • PDF

ZEB 인증제 고도화를 위한 기존 건축물 부하별 연관성 연구 (A study on the relationship between the existing building load for the advance ZEB certification system)

  • 이항주;맹선영;김인수;안종욱
    • 에너지공학
    • /
    • 제27권3호
    • /
    • pp.21-27
    • /
    • 2018
  • 제로에너지 건축물 인증제도 시행에 따라 민간부문 활성화 및 보급 확대를 위한 제도의 지속적인 고도화가 이루어지고 있으며, 정부는 공공부문을 시작으로 민간부문에 확대 될 때까지 단계별 의무화 로드맵을 설정하였다. 이에 따라 제로에너지빌딩 인증제의 기반이 되는 건물에너지효율인증 기준에 따른 2016~2017년 기존 건축물들의 에너지소요량을 분석하여 주요 인자 변화에 따른 부하별 연관성에 대해 분석하였다. 기존 건축물중 아파트, 오피스텔 등 주거용을 제외한 중부 및 남부지역 714개 건물을 분류하여 1차 에너지소요량을 분석하였다. 새로운 설계기법들이 적용됨에 따라 패시브측면에서의 에너지요구량은 지속적으로 감소하고 있으며, 신재생에너지 보급 활성화와 연계되어 제로에너지빌딩 시범사업 또한 지속적으로 이루어지고 있는 실정에 제로에너지빌딩 인증 기준을 고도화하기 위해 다양한 방법들을 적용하여 해석할 필요성이 있다고 판단된다.

빌딩 내 최대 풍력발전설비 연계를 위한 소형풍력발전원 구성에 관한 연구 (A Study on Configuration of Small Wind Turbines for Maximum Capacity of Wind Power Systems Interconnected With a Building)

  • 이여진;김성열
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.605-612
    • /
    • 2017
  • One of the biggest environmental issues that our world has been facing is climate change. In order to cope with such environmental issues, the world is putting a great deal of effort into energy conservation. The building sector, in particular, consumes 36% of the energy consumed worldwide and emits considerable amount of greenhouse gases. Therefore, introduction of renewable energies in the building sector is highly recommended. Renewable energy sources that can be utilized in the building sector include sunlight, solar heat, geothermal heat, fuel cells and wind power. The wind power generation system which converts wind energy into electrical energy has advantages in that wind is an unlimited and pollution-free resource. It is suitable to be connected to existing buildings because many years of operational experience and the enhanced stability of the system have made it possible to downsize the electrical generator. In case of existing buildings, it is necessary to consider the live loads of the buildings to connect the wind power generation system. This paper, through the connection of the wind power generation with existing buildings, promotes reduction of greenhouse gas emissions and energy independence by reducing energy consumption in the building sector. In order to connect the wind power generation system with an exciting building, the live load of the building and the area of the rooftop should be considered. The installable model is selected by comparing the live load of the building and the load of the wind power generation system. The maximum number of the wind turbines that can be installed is obtained by considering the separation distance between the wind turbines within the area of the rooftop. Installations are divided into single installations and multiple installations of two different types of wind turbines. After determining the maximum installable number, the optimal model that can achieve the maximum annual power generation will be selected by comparing the respective total annual amount of the power generation of different models.

High Spatial Resolution Satellite Image Simulation Based on 3D Data and Existing Images

  • La, Phu Hien;Jeon, Min Cheol;Eo, Yang Dam;Nguyen, Quang Minh;Lee, Mi Hee;Pyeon, Mu Wook
    • 한국측량학회지
    • /
    • 제34권2호
    • /
    • pp.121-132
    • /
    • 2016
  • This study proposes an approach for simulating high spatial resolution satellite images acquired under arbitrary sun-sensor geometry using existing images and 3D (three-dimensional) data. First, satellite images, having significant differences in spectral regions compared with those in the simulated image were transformed to the same spectral regions as those in simulated image by using the UPDM (Universal Pattern Decomposition Method). Simultaneously, shadows cast by buildings or high features under the new sun position were modeled. Then, pixels that changed from shadow into non-shadow areas and vice versa were simulated on the basis of existing images. Finally, buildings that were viewed under the new sensor position were modeled on the basis of open library-based 3D reconstruction program. An experiment was conducted to simulate WV-3 (WorldView-3) images acquired under two different sun-sensor geometries based on a Pleiades 1A image, an additional WV-3 image, a Landsat image, and 3D building models. The results show that the shapes of the buildings were modeled effectively, although some problems were noted in the simulation of pixels changing from shadows cast by buildings into non-shadow. Additionally, the mean reflectance of the simulated image was quite similar to that of actual images in vegetation and water areas. However, significant gaps between the mean reflectance of simulated and actual images in soil and road areas were noted, which could be attributed to differences in the moisture content.

Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Hussain, Raja Rizwan;Hosen, Md. Akter;Huda, Md. Nazmul
    • Computers and Concrete
    • /
    • 제16권4호
    • /
    • pp.503-529
    • /
    • 2015
  • Traditionally, multi-story buildings are designed to provide stiffer structural support to withstand lateral earthquake loading. Introducing flexible elements at the base of a structure and providing sufficient damping is an alternative way to mitigate seismic hazards. These features can be achieved with a device known as an isolator. This paper covers the design of base isolators for multi-story buildings in medium-risk seismicity regions and evaluates the structural responses of such isolators. The well-known tower building for police personnel built in Dhaka, Bangladesh by the Public Works Department (PWD) has been used as a case study to justify the viability of incorporating base isolators. The objective of this research was to establish a simplified model of the building that can be effectively used for dynamic analysis, to evaluate the structural status, and to suggest an alternative option to handle the lateral seismic load. A finite element model was incorporated to understand the structural responses. Rubber-steel bearing (RSB) isolators such as Lead rubber bearing (LRB) and high damping rubber bearing (HDRB) were used in the model to insert an isolator link element in the structural base. The nonlinearities of rubber-steel bearings were considered in detail. Linear static, linear dynamic, and nonlinear dynamic analyses were performed for both fixed-based (FB) and base isolated (BI) buildings considering the earthquake accelerograms, histories, and response spectra of the geological sites. Both the time-domain and frequency-domain approaches were used for dynamic solutions. The results indicated that for existing multi-story buildings, RSB diminishes the muscular amount of structural response compared to conventional non-isolated structures. The device also allows for higher horizontal displacement and greater structural flexibility. The suggested isolation technique is able to mitigate the structural hazard under even strong earthquake vulnerability.