• Title/Summary/Keyword: Existing Concrete Structures

Search Result 709, Processing Time 0.029 seconds

Fuzzy methodology application for modeling uncertainties in chloride ingress models of RC building structure

  • Do, Jeongyun;Song, Hun;So, Seungyoung;Soh, Yangseob
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.325-343
    • /
    • 2005
  • Chloride ingress is a common cause of deterioration of reinforced concrete located in coastal zone. Modeling the chloride ingress is an important basis for designing reinforced concrete structures and for assessing the reliability of an existing structure. The modeling is also needed for predicting the deterioration of a reinforced structure. The existing deterministic solution for prediction model of corrosion initiation cannot reflect uncertainties which input variables have. This paper presents an approach to the fuzzy arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity, concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. There are a lot of prediction model for predicting the time of reinforcement corrosion of structures exposed to chloride-induced corrosion environment. In this work, RILEM model formula and Crank's solution of Fick's second law of diffusion is used. The parameters of the models are regarded as fuzzy numbers with proper membership function adapted to statistical data of the governing parameters instead of random variables of probabilistic modeling of Monte Carlo Simulation and the fuzziness of the time to corrosion initiation is determined by the fuzzy arithmetic of interval arithmetic and extension principle. An analysis is implemented by comparing deterministic calculation with fuzzy arithmetic for above two prediction models.

Simulation of Prestressed Steel Fiber Concrete Beams Subjected to Shear

  • Lu, Liang;Tadepalli, P.R.;Mo, Y.L.;Hsu, T.T.C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.297-306
    • /
    • 2016
  • This paper developed an analytical software, called Simulation of Concrete Structures (SCS), which is used for numerical analysis of shear-critical prestressed steel fiber concrete structures. Based on the previous research at the University of Houston (UH), SCS has been derived from an object-oriented software framework called Open System for Earthquake Engineering Simulation (OpenSees). OpenSees was originally developed at the University of California, Berkeley. New module has been created for steel fiber concrete under prestress based on the constitutive relationships of this material developed at UH. This new material module has been integrated with the existing material modules in OpenSees. SCS thus developed has been used for predicting the behavior of the prestressed steel fiber concrete I-beams and Box-beams tested earlier in this research. The analysis could well predict the entire behavior of the beams including the elastic stiffness, yield point, post-yield stiffness, and maximum load for both web shear and flexure shear failure modes.

Bond and ductility: a theoretical study on the impact of construction details - part 1: basic considerations

  • Zwicky, Daia
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.103-119
    • /
    • 2013
  • The applicability of limit analysis methods in design and assessment of concrete structures generally requires a certain plastic deformation capacity. The latter is primarily provided by the ductility of the reinforcement, being additionally affected by the bond properties between reinforcing steel and concrete since they provoke strain localization in the reinforcement at cracks. The bond strength of reinforcing bars is not only governed by concrete quality, but also by construction details such as bar ribbing, bar spacing or concrete cover thickness. For new concrete structures, a potentially unfavorable impact on bond strength can easily be anticipated through appropriate code rules on construction details. In existing structures, these requirements may not be necessarily satisfied, consequently requiring additional considerations. This two-part paper investigates in a theoretical study the impacts of the most frequently encountered construction details which may not satisfy design code requirements on bond strength, steel strain localization and plastic deformation capacity of cracked structural concrete. The first part introduces basic considerations on bond, strain localization and plastic deformation capacity as well as the fundamentals of the Tension Chord Model underlying the further investigations. It also analyzes the impacts of the hardening behavior of reinforcing steel and concrete quality. The second part discusses the impacts of construction details (bar ribbing, bar spacing, and concrete cover thickness) and of additional structure-specific features such as bar diameter and crack spacing.

Durability Prediction for Concrete Structures Exposed to Carbonation Using a Bayesian Approach (베이지안 기법을 이용한 중성화에 노출된 콘크리트 구조물의 내구성 예측)

  • Jung, Hyun-Jun;Kim, Gyu-Seon;Ju, Min-Kwan;Lee, Sang-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.275-276
    • /
    • 2009
  • This paper provides a new approach for predicting the corrosion resistivity of reinforced concrete structures exposed to carbonation. In this method, the prediction can be updated successively by a Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model. To simplify the procedure of the model, the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures which have been monitored.

  • PDF

An Advisory Expert System for the Designer of Reinforced Concrete Structures (철근 콘크리트 구조물 설계자를 위한 전문가 시스템 개발)

  • 정영식;김철환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.372-377
    • /
    • 1995
  • Expert systems which represent the appllication of artificial intelligence research are now nearly 20 years old. It is said that the present technology together with ever- increasing computing applicability of Combined Hypertext-Expert System Techniques to the design of reinforced concrete structures. Hypertext systems allow the user to control the system while expert systems alone don't give the user any control over the system. Therefore the combination of these two techniques, offered by KnowledgePro, may bring us closer to real user-expert communication. The system developed in this work offers information on design in general by reorganizing ACI Manual 318-89, detailed stress analysis and cross sectional design of simple PC/RC beams and optimum design of reinforced concrete building frames. The system also includes the author's earlier work on guidance to identify types of cracks in concrete. It is also includes the author's earlier work on guidance to identify types of cracks in concrete. It is also demonstrated how well and conveniently existing programs can be used by reorganizing the user manuals in the context of hypertext.

  • PDF

An Experimental Study on the Bond Failure Behavior between Parent Concrete and CFM (콘크리트와 탄소섬유메쉬의 부착파괴 거동에 관한 실험적 연구)

  • 오재혁;성수용;한병찬;윤현도;서수연;김태용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.965-970
    • /
    • 2002
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of the enhanced bond of CFM. Therefore if bond strength is sufficient, it will be expected to enhance reinforcement effect. If insufficient, reinforcement effect can not be enhanced because of bond failure between concrete and CFM. This study is to investigate the bond strength of CFM to the concrete using direct pull-out test and tensile-shear test. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

  • PDF

Secondary Mineral Formation and Concrete Deterioration Caused by Certain Environmental Conditions (특정환경조건하에서의 콘크리트 내 이차광물생성과 그에 수반된 성능저하현상)

  • 이효민;황진연;진치섭;이진성;전쌍순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.651-656
    • /
    • 2003
  • Durability of concrete is possibly related to externally-induced chemical attacks in addition to internally-induced deterioration. Externally-induced chemical attacks can be derived from various sources according to environmental conditions under which concrete structures are existing. The present study investigates the characteristic concrete deterioration and formation of secondary minerals by external chemical attacks under certain environmental condition. Petrographic microscope, SEM, EDAX, XRD analyses were conducted to identify secondary mineral formation and micro-structural analyses.

  • PDF

A Study on the Application of Non-destructive Test for Concrete Bridges in Korea (국내 콘크리트 교량에 적합한 비파괴 시험법 적용에 관한 연구)

  • 이학은;윤영수;이병철;김영민;정우용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.737-742
    • /
    • 1998
  • Non-destructive field tests of the concrete has achieved increasing acceptance for the evaluation of existing concrete structures. But the application of this test has not still accomplished to guarantee perfectly the durability of the concrete bridges in Korea. As two major testing methods, this paper recommends the proper empirical relationship between the rebound number together with the ultrasonic pulse velocity and the core strength. Also, this paper recommend the relationships as the aging and as the element.

  • PDF

Concrete stiffness matrices for membrane elements

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.599-608
    • /
    • 1997
  • The concrete stiffness matrices of membrane elements used in the finite element analysis of wall-type structures are reviewed and discussed. The behavior of cracked reinforced concrete membrane elements is first described by summarizing the constitutive laws of concrete and steel established for the two softened truss models (the rotating-angle softened-truss model and the fixed-angle softened-truss model). These constitutive laws are then related to the concrete stiffness matrices of the two existing cracking models (the rotating-crack model and the fixed-crack model). In view of the weakness in the existing models, a general model of the matrix is proposed. This general matrix includes two Poisson ratios which are not clearly understood at present. It is proposed that all five material properties in the general matrix should be established by new biaxial tests of panels using proportional loading and strain-control procedures.

Experimental study on the shear failure model for concrete under compression-shear loading

  • Shu, Xiaojuan;Luo, Yili;Zhao, Chao;Dai, Zhicheng;Zhong, Xingu;Zhang, Tianyu
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 2022
  • The influence of normal stress perpendicular to the potential shear plane was always neglected in existing researches, which may lead to a serious deviation of the shear strength of concrete members in practice designs and numerical analyses. In this study, a series of experimental studies are carried out in this paper, which serves to investigate the shear behavior of concrete under compression shear loading. Based on the test results, a three-phase shear failure model for cohesive elements are developed, which is able to take into consideration the influence of normal stress on the shear strength of concrete. To identify the accuracy and applicability of the proposed model, numerical models of a double-noted concrete plate are developed and compared with experimental results. Results show that the proposed constitutive model is able to take into consideration the influence of normal stress on the shear strength of concrete materials, and is effective and accurate for describing the complex fracture of concrete, especially the failure modes under compression shear loadings.