• Title/Summary/Keyword: Existing Concrete Structures

Search Result 702, Processing Time 0.023 seconds

Computationally efficient 3D finite element modeling of RC structures

  • Markou, George;Papadrakakis, Manolis
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.443-498
    • /
    • 2013
  • A detailed finite element modeling is presented for the simulation of the nonlinear behavior of reinforced concrete structures which manages to predict the nonlinear behavior of four different experimental setups with computational efficiency, robustness and accuracy. The proposed modeling method uses 8-node hexahedral isoparametric elements for the discretization of concrete. Steel rebars may have any orientation inside the solid concrete elements allowing the simulation of longitudinal as well as transverse reinforcement. Concrete cracking is treated with the smeared crack approach, while steel reinforcement is modeled with the natural beam-column flexibility-based element that takes into consideration shear and bending stiffness. The performance of the proposed modeling is demonstrated by comparing the numerical predictions with existing experimental and numerical results in the literature as well as with those of a commercial code. The results show that the proposed refined simulation predicts accurately the nonlinear inelastic behavior of reinforced concrete structures achieving numerical robustness and computational efficiency.

Experiments on Steel Specimen for Concrete Crack Measurements (콘크리트 균열 탐사를 위한 철제시편 비교 실험)

  • Kim, Dae-You;Rhim, Hong-Chul;Cho, youn-jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.124-125
    • /
    • 2016
  • The various size and shape of cracks in concrete induce deterioration of reinforced concrete structures including nuclear power plants. The wider and deeper the crack is, the concrete structures are more vulnerable to carbonization. Thus, it is essential to develop a reliable measurement technique of cracks inside concrete. In this study, an ultrasonic test method is applied to the crack measurements. The results can be used for evaluation of existing reinforced concrete structures.

  • PDF

Concrete Crack Detection and Visualization Method Using CNN Model (CNN 모델을 활용한 콘크리트 균열 검출 및 시각화 방법)

  • Choi, Ju-hee;Kim, Young-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.73-74
    • /
    • 2022
  • Concrete structures occupy the largest proportion of modern infrastructure, and concrete structures often have cracking problems. Existing concrete crack diagnosis methods have limitations in crack evaluation because they rely on expert visual inspection. Therefore, in this study, we design a deep learning model that detects, visualizes, and outputs cracks on the surface of RC structures based on image data by using a CNN (Convolution Neural Networks) model that can process two- and three-dimensional data such as video and image data. do. An experimental study was conducted on an algorithm to automatically detect concrete cracks and visualize them using a CNN model. For the three deep learning models used for algorithm learning in this study, the concrete crack prediction accuracy satisfies 90%, and in particular, the 'InceptionV3'-based CNN model showed the highest accuracy. In the case of the crack detection visualization model, it showed high crack detection prediction accuracy of more than 95% on average for data with crack width of 0.2 mm or more.

  • PDF

Reliability-based assessment of damaged concrete buildings

  • Sakka, Zafer I.;Assakkaf, Ibrahim A.;Qazweeni, Jamal S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.751-760
    • /
    • 2018
  • Damages in concrete structures due to aging and other factors could be a serious and immense matter. Making the best selection of the most viable and practical repairing and strengthening techniques are relatively difficult tasks using traditional methods of structural analyses. This is due to the fact that the traditional methods used for assessing aging structure are not fully capable when considering the randomness in strength, loads and cost. This paper presents a reliability-based methodology for assessing reinforced concrete members. The methodology of this study is based on probabilistic analysis, using statistics of the random variables in the performance function equations. Principles of reliability updating are used in the assessment process, as new information is taken into account and combined with prior probabilistic models. The methodology can result in a reliability index ${\beta}$ that can be used to assess the structural component by comparing its value with a standard value. In addition, these methods result in partial safety factor values that can be used for the purpose of strengthening the R/C elements of the existing structure. Calculations and computations of the reliability indices and the partial safety factors values are conducted using the First-order Reliability Method and Monte Carlo simulation.

A Research on the Carbonization Status of Aged Concrete Structures (장기 재령 콘크리트 구조물의 탄산화 현상 조사)

  • 김광기;박승기;김우재;조영길;송병창;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.70-73
    • /
    • 2003
  • Although there has been an upcoming recognition in the repairing reinforcement and remodeling of currently existing buildings with a regard to economic and resource saving effects of buildings roughly exposed to the open air for a long-term period, followed by a number of problems with the construction business operations that support economy-oriented projects within the limits of their short-term period durability, it is true that reasonable decisions of concrete performance are insufficient owing to the lack of proper history management for those existing buildings. This research attempted to comparatively analyze the compression strength together with investigation of carbonization depth and alkali concentration according to the passage of years on the subjects of aged buildings, and to provide basic data for remodeling and/or reconstruction of future construction structures by indirectly estimating durability lifetime expectancy according to carbonization phenomenon.

  • PDF

Modelling and integrity assessment of shear connectors in precast cast-in-situ concrete bridges

  • Moyo, Pilate;Sibanda, Bongani;Beushausen, Hans
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.55-72
    • /
    • 2012
  • Precast-cast insitu concrete bridge construction is widely practiced for small to medium span structures. These bridges consist of precast pre-stressed concrete beams of various cross-sections with a cast in-situ reinforced concrete slab. The connection between the beams and the slab is via shear links often included during the manufacturing process of the beams. This form of construction is attractive as it provides for standardisation, reduced formwork and construction time. The assessment of the integrity of shear connectors in existing bridges is a major challenge. A procedure for assessment of shear connectors based on vibration testing and finite element model updating is proposed. The technique is applied successfully to a scaled model bridge model and an existing bridge structure.

Design of multiphase carbon fiber reinforcement of crack existing concrete structures using topology optimization

  • Nguyen, Anh P.;Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.635-645
    • /
    • 2018
  • Beam-column joints play a significant role in static and dynamic performances of reinforced concrete frame structures. This study contributes a numerical approach of topologically optimal design of carbon fiber reinforced plastics (CFRP) to retrofit existing beam-column connections with crack patterns. In recent, CFRP is used commonly in the rehabilitation and strengthening of concrete members due to the remarkable properties, such as lightweight, anti-corrosion and simplicity to execute construction. With the target to provide an optimal CFRP configuration to effectively retrofit the beam-column connection under semi-failure situation such as given cracks, extended finite element method (X-FEM) is used by combining with multi-material topology optimization (MTO) as a mechanical description approach for strong discontinuity state to mechanically model cracked structures. The well founded mathematical formulation of topology optimization problem for cracked structures by using multiple materials is described in detail in this study. In addition, moved and regularized Heaviside functions (MRHF), that have the role of a filter in multiple materials case, is also considered. The numerical example results illustrated in two cases of beam-column joints with stationary cracks verify the validity, benefit and supremacy of the proposed method.

Structural safety reliability of concrete buildings of HTR-PM in accidental double-ended break of hot gas ducts

  • Guo, Quanquan;Wang, Shaoxu;Chen, Shenggang;Sun, Yunlong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1051-1065
    • /
    • 2020
  • Safety analysis of nuclear power plant (NPP) especially in accident conditions is a basic and necessary issue for applications and commercialization of reactors. Many previous researches and development works have been conducted. However, most achievements focused on the safety reliability of primary pressure system vessels. Few literatures studied the structural safety of huge concrete structures surrounding primary pressure system, especially for the fourth generation NPP which allows existing of through cracks. In this paper, structural safety reliability of concrete structures of HTR-PM in accidental double-ended break of hot gas ducts was studied by Exceedance Probability Method. It was calculated by Monte Carlo approaches applying numerical simulations by Abaqus. Damage parameters were proposed and used to define the property of concrete, which can perfectly describe the crack state of concrete structures. Calculation results indicated that functional failure determined by deterministic safety analysis was decided by the crack resistance capability of containment buildings, whereas the bearing capacity of concrete structures possess a high safety margin. The failure probability of concrete structures during an accident of double-ended break of hot gas ducts will be 31.18%. Adding the consideration the contingency occurrence probability of the accident, probability of functional failure is sufficiently low.

Repair, retrofitting and rehabilitation techniques for strengthening of reinforced concrete beams - A review

  • Ganesh, P.;Murthy, A. Ramachandra
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.101-117
    • /
    • 2019
  • Structural strengthening of reinforced concrete (RC) beams is becoming essential to meet the up-gradation of existing structures due to the infrastructure development. Strengthening is also essential for damaged structural element due to the adverse environmental condition and other distressing factors. This article reviews the state of the field on repair, retrofitting and rehabilitation techniques for the strengthening of RC beams. Strengthening of RC beams using various promising techniques such as externally bonded steel plates, concrete jacketing, fibre reinforced laminates or sheets, external prestressing/external bar reinforcement technique and ultra-high performance concrete overlay have been extensively investigated for the past four decades. The primary objective of this article is to discuss investigations on various strengthening techniques over the years. Various parameters that have been discussed include the flexural capacity, shear strength, failure modes of various strengthening techniques and advances in techniques over the years. Firstly, background information on strengthening, including repair, retrofitting, and rehabilitation of RC beams is provided. Secondly, the existing strengthening techniques for reinforced concrete beams are discussed. Finally, the relative comparisons and limitations in the existing techniques are presented.

Evaluation of CFS Tensile Strength Reduction Factor for Bending Analysis of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트 보강보 휨해석에 영향을 미치는 섬유시트 인장강도 감소계수 평가)

  • 윤진섭;이우철;정진환;김성도;조백순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.359-362
    • /
    • 2003
  • Carbon fiber sheet is attractive due to its good tensile strength, resistance to corrosion, and low weight. The strengthening of concrete structures with externally bonded carbon fiber sheets is increasingly being used for repair and rehabilitation of existing structures. However CFS strengthened beams break down under the service loads. As rupture strain is not reached ultimate value, reduction of the tensile strength is recommended. This study evaluate CFS tensile strength reduction factor which is required to analyze bending moment.

  • PDF