• Title/Summary/Keyword: Exhaust pipe

Search Result 228, Processing Time 0.027 seconds

The Basic Study on the Leak Test Method of the Hydrogen Exhaust Pipe for a Fuel Cell Vehicle (연료전지차용 수소배출 배관 및 배관이음매 안전성 평가를 위한 기초 연구)

  • Suh, Ho-Cheol;Park, Kyoung-Suk;Seo, Kyung-Doo;Yong, Gee-Joong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.185-192
    • /
    • 2011
  • This study deals with a basic proposal to prove the safety for the exhausted fittings of the hydrogen fuel cell vehicle. First, this study was approached to numerical analysis solving to close the exact boundary condition (Axial, Bending, Lateral) and the second, this study produced the Lateral movement equipment for the vibration. For the numerical analysis, This study was considered with the exact solution of Lateral movement and the resonance effect for durability sample according to fitting positions. The second, This study was made for special equipment for displacement/gas leak and the frequency because the domestic samples were comparing with foreign fitting and foreign fitting for the hydrogen fuel cell vehicle. The result of this study was satisfied with domestic fittings for the basic reference but it need more test because of other situation for hydrogen fuel cell vehicle.

A study on the performance of the perforated tube exhaust muffler (다공형 배기 소음기의 성능에 관한 연구)

  • 권영필;이동훈;방정환
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.48-59
    • /
    • 1992
  • This study is on the performance of the perforated tube muffler when it operates as an exhaust silencer with through-flow, steady or pulsating. Theoretical estimation of the insertion loss was made by means of transfer matrix and by using the impedance equation for the perforated tube obtained for the case of low-speed steady through-flow. Experiment was performed for the measurement of the insertion loss at two flow conditions. The one is a steady flow from the exhaust pipe of an idling diesel engine. The effect of the through-flow velocity and steadiness on the muffler performance was obtained. By comparing the theoretical prediction with the experimental result, the validity of the impedance equation in the theoretical model was discussed. It has been found that steadiness as well as magnitude of the through-flow has a significant effect on the performance of the perforated tube muffler. Especially, the self-noise due to the pulsating flow in the engine exhaust system must be taken into account for the prediction of the muffler performance.

  • PDF

The Effect of Insertion Loss on the Element of Exhaust Muffler (배기 소음기 구조가 삽입손실에 미치는 영향)

  • 강동림;김영호;전현부기;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.42-51
    • /
    • 2000
  • The performances of the simple expansion, perforated tube, and conical-connector type as an exhaust muffler are shown in this study. Applying a model in which the method of four-pole parameter is used makes theoretical estimation of the insertion loss. Experiment is performed for the measurement of the insertion loss under four cases according to the variation of the tail pipe length. By comparing the theoretical prediction with the experimental results, the validity of the modeling using the method of four-pole parameter is verified. The personal computer simulation programs for the above mentioned theory on the muffler design have been developed and exhaust sound level measurements have been carried out for simple expansion muffler, conical-connector muffler, perforated tube mufflers and the combined type of conical-connector and simple expansion muffler. The measured results for attenuation characteristics of noise for each muffler are compared with the computed theoretical results to verity the confidence and applicable limits of the theoretical equation derived.

  • PDF

Analysis of Filtration Characters Ceramic filter Collectors for PM removal of Diesel Engine exhaust gas (디젤엔진 배기가스의 PM저감용 세라믹필터 집진장치 여과특성에 관한 연구)

  • Lee, K.S;Kim, Ki ho;Oh, Jeong won;Lee, Young pill
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.151-152
    • /
    • 2012
  • Collectors connected to diesel engine exhaust pipe for application of PM reduction facilities which was used to reduce PM from the exhaust gas produced from ship, Filtration performance of PM was tested. In this system, it was confirmed that the bag house can remove over 90 percent of PM from a lot of high temperature and high pressure gases produced in diesel engine. The results obtained from performance test show the potential possibility for commercialization of ceramic filter collectors which is applied to reduction facilities of flue gas produced from a diesel engine on the ship.

  • PDF

A study on the performance prediction of 4 cycle 4 cylinder S.I. engine considering the unsteady flow in the intake and exhaust pipes (흡배기 관내의 비정상 유동을 고려한 4사이클, 4기통 전기.점화 기관의 성능 예측에 관한 연구)

  • 박성서;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.72-81
    • /
    • 1991
  • In this study, the analytic investigation of the unsteady flow in the intake and exhaust pipes has been carried out using the method of characteristics in one direction to predict volumetric efficiency. Based on the calculated volumetric efficiency, three zone predictive analysis using Wiebe function was applied to predict the engine performance and the results were compared with experiment. Mixture in the cylinder is subdivided into three zones during combustion process in this analysis; adiabatic core zone, thermal boundary layer zone and unburned zone. In each zone, pressure, temperature and gas composition have been calculated. In conclusion, it is possible to take account of the intake and exhaust pipe tuning effect in predicting the engine performance, by the analytic solution of the unsteady flow in the pipes, and comparison of prediction with experimental results shows a good agreement on the pressure variation in the intake and exhaust pipes which has a direct influence on the volumetric efficiency and performance of the engine.

  • PDF

A study on the pressure variation in the intake and exhaust pipes of four cycle four cylinder S.I. engine (4 사이클 4기통 전기점화기관의 흡배기관내의 압력변동에 관한 연구)

  • 이석재;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.85-91
    • /
    • 1988
  • The purpose of this study is to investigate the flow through the intake and exhaust system of a spark ignition engine. The flow was assumed to be one-dimensional, compressible and unsteady, and carburetor, muffler, valve and junction are modelled as boundary conditions according to their flow characteristics. In the experiment, four cylinder gasoline engine is used and the pressures in the intake and exhaust pipes and in the cylinder are measured and compared with the results of numerical analysis. In consequence of the comparison, four periods of pressure wave in a cycle are observed in both case of experiment and prediction. In case of exhaust pipe, the results obtained from the experiment are in accord with that from calculation. The results of the intake system show some differences with each other due to the complication in shape, but the periods of both case concur well.

  • PDF

Numerical Study on the Air-Cushion Unit for Transportation of Large-Sized Glass Plate

  • Jun, Hyun-Joo;Kim, Kwang-Sun;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.59-64
    • /
    • 2007
  • Non-contact transportation of a large-sized glass plate using air cushion for the vertical sputtering system of liquid crystal display (LCD) panel was considered. The objective of the study was to design an air pad unit which was composed of multiple injection and exhaust holes and mass flow supplying pipe. The gas was injected through multiple small holes to maintain the force for levitating glass plate. After hitting the plate, the air was vented through exhaust holes. Complex flow field and resulting pressure distribution on the glass surface were numerically studied to design the air injection pad. The exhaust hole size was varied to obtain evenly distributed pressure distribution at fixed diameter of the injection hole. Considering the force for levitating glass plate, the diameter of the exhaust hole of 30 to 40 times of the gas injection hole was recommended.

  • PDF

Study on the Optimal Injection Condition for HC-LNT Catalyst System for Diesel Engines with a Gasoline PFI Type Injector (가솔린 인젝터를 디젤엔진용 HC-LNT 촉매에 적용하기 위한 최적 분사 조건에 관한 연구)

  • Oh, Jung-Mo;Mun, Woong-Ki;Kim, Ki-Bum;Lee, Jin-Ha;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • NOx (Nitrogen Oxide) reduction system periodically needs a rich or stoichiometric operating condition to reduce NOx. A new method that optimizes the control of external HC injection into a diesel exhaust pipe for HC-type LNT (Lean NOx Trap) catalyst system has been developed. In this paper, these catalysts are called HC-LNT catalysts. The concentration and amount of HC can be controlled by controlling the external injection. In this study, we investigated the relationship between the spray behavior of hydrocarbons injected into the transparent exhaust pipe and NOx reduction characteristics. From the results of this experiment, we obtained useful information about the optimum injection and position of HC injector to the exhaust pipe. Further, we obtained useful information about the optimal injection condition for an HC-LNT catalyst system with a gasoline PFI (port fuel injection) typeinjector.

A Study on the Power Output and Exhaust Emission using the Fuel Vaporizing Device in Spark-Ignition Engine (기화혼합장치를 사용한 스파크 점화기관의 기관성능 및 배기성능에 관한 연구)

  • 이성열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.53-59
    • /
    • 1987
  • The effect of the three types of fuel vaporizing device on the engine torque and exhaust emission was investigated. Among the three types of fuel vaporizing device designed for the experiments, a 88mm long device with mesh around the inside pipe showed stable lean mixture combustion up to 21:1 air-fuel ratio and reduced the exhaustion of CO and HC. Compared with the general trend in the decrease of engine torque it was observed that the decrease of engine torque in this lean mixture combustion with the new device was small.

  • PDF