• Title/Summary/Keyword: Exhaust gas temperature

Search Result 731, Processing Time 0.027 seconds

An Experimental Study on Spark Timing Effect for Fast warmup of Catalyst to Cold Start Operation of an SI Engine (가솔린기관의 냉시동시 촉매 가열 촉진을 위한 점화시기 영향에 대한 실험적 연구)

  • Kwon, Y.W.;Ham, S.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.101-108
    • /
    • 2011
  • On cold start operation of an SI engine, a catalyst shows poor performance before it reaches activation temperature. Therefore, fast warmup of the catalyst is very crucial to reduce harmful emissions. In this study, an appropriate control strategy is investigated to increase exhaust gas temperature through changes of spark timing. Combustion stability is also considered at the same time. Exhaust gas temperature and pressure of combustion chamber are measured to investigate the effects of spark timings on cold start and idle performance. Experiments showed that retarded spark timing promotes the combustion at the end of expansion stroke and increases exhaust gas temperature during cold start.

A Study on the Reduction of HC and Heat Characteristics of the Dual Pipe Exhaust Manifold (이중관 배기메니폴드의 HC저감효과 및 열특성에 관한 연구)

  • 박경석;허형석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.103-111
    • /
    • 2001
  • During cold-start period, the reduction of exhaust emissions is a challenging task. To decrease harmful gaseous substances such as HC, it is necessary to realize a fast catalyst warm-up. In this study, the performance of dual pipe exhaust system have been carried out through different test mode. From measurement of gas temperature and HC concentration, the following conclusions were derived ; 1) Compared with single pipe, dual pipe exhaust system remarkably increase temperature of exhaust gas going through M.C.C(Main Catalytic Converter). 2) W.C.C.(Warm-up Catalytic Converter) also decreases HC emission. To reduce HC emission, it is helpful to use W.C.C. as well as dual pipe exhaust system. 3) Using finite element method, it is shown that inner parts have much higher distribution of temperature than outer parts.

  • PDF

A Conversion Rate Prediction Study of Exhaust Gas by Catalyst Simulation in Heavy Duty Natural Gas Vehicle (대형천연가스차량에서 촉매시뮬레이션에 의한 배출가스의 변환율 예측 연구)

  • 한영출;오용석;강호인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.257-264
    • /
    • 2000
  • An aftertreatment device which reduce exhaust gas of natural gas vehicle(NGV), NGV catalyst has important meaning as to reduce the exhaust emission. In this study, the characteristics of NGV catalyst were investigated and the effect parameters of NGV catalyst were analyzed and were predicted by changing the various parameters such as temperature, and gas concentration. The conversion efficiency of NGV catalyst converter was also predicted by Pd-loading, mass flow rate and gas composition.

  • PDF

A Study on Thermal and Modal Characteristics for EGR System with Dimpled Rectangular Tube (딤플 사각 튜브형 배기 가스 재순환 시스템의 열 및 진동 특성에 관한 연구)

  • Seo, Young-Ho;Heo, Sung-Chan;Kwon, Young-Seok;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.115-125
    • /
    • 2008
  • Recently, Exhaust Gas Recirculation (EGR) system which re-flow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.

Estimation of Exhaust Gas Recirculation using In-Cylinder Residual Gas Fraction in an SI Engine (잔류가스 추정 기법을 이용한 EGR율의 예측)

  • 김득상;김성철;황승환;조용석;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.55-60
    • /
    • 2004
  • Residual gas acts as a diluent which results in reducing the in-cylinder temperature as well as the flame speed, significantly affecting fuel economy, NOx emissions and combustion stability. Therefore it is important to determine the residual gas fraction as a function of the engine operating parameters accurately. However, the determination of the residual gas fraction is very sophisticated due to the unsteady state of induction and exhaust process. There has been little work toward the development of a generally applicable model for quantitative predictions of residual gas fraction. In this paper, a simple model for calculating the residual gas fraction in SI engines was suggested. The amount of fresh air was evaluated through AFR and fuel consumption. After this, from the intake temperature and pressure, the amount of total cylinder-charging gas was estimated. The residual gas fraction was derived by comparing the total charging and fresh air. This results coincide with measured EGR value very well.

A Study on Effect of Intake Mixture Temperature upon Fuel Economy and Exhaust Emissions in Diesel Engines with a Scrubber EGR System

  • Bae, Myung--Whan;Ryu, Chang-Seong;Yoshihiro Mochimaru;Jeon, Hyo-Joong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.315-331
    • /
    • 2004
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle. four-cylinder. swirl chamber type. water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas Recirculation (EGR) control system for reducing $\textrm{NO}_{x}$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $\textrm{NO}_{x}$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection. however. would be included within those of scrubber EGR system. In order to survey the effects of cooled EGR and moisture on $\textrm{NO}_{x}$ and soot emissions. the intake mixtures of fresh air and recirculated exhaust gas are heated up using a heater with five heating coils equipped in a steel drum. It is found that intake and exhaust oxygen concentrations are decreased, especially at higher loads. as EGR rate and intake mixture temperature are increased at the same conditions of engine speed and load. and that $\textrm{NO}_{x}$ emissions are decreased. while soot emissions are increased owing to the decrease in intake and exhaust oxygen concentrations and the increase in equivalence ratio. Thus ond can conclude that $\textrm{NO}_{x}$ and soot emissions are considerably influenced by the cooled EGR.

IDLE PERFORMANCE OF AN SI ENGINE WITH VARIATIONS IN ENGINE CONTROL PARAMETERS

  • Kim, D.S.;Cho, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.763-768
    • /
    • 2006
  • Emission reduction in the cold start period of SI engines is crucial to meet stringent emission regulations such as SULEV Emissoin reduction is the starting point of the study in the which the variable valve timing (VVT) technology may be one promising method to minimize cold start emissions while maintaining engine performance. This is because it is possible to change valve overlap and residual gas fraction during cold start and idle operations. Our previous study showed that spark timing is another important factor for reducing cold-start emissions since it affects warm-up time of close-coupled catalysts (CCC) by changing exhaust gas temperature. However, even though these factors may be favorable for reduction of emissions, they may deteriorate combustion stability in these operating conditions. This means that the two variables should be optimized for best exhaust emissions and engine stability. This study investigated the effects of valve and spark timings in idle performance such as combustion stability and exhaust emissions. Experiments showed that valve timings significantly affected engine stability and exhaust emissions, especially CO and $NO_x$, due to change in residual gas fraction within the combustion chamber. Spark timing also affects HC emissions and exhaust gas temperature. Yet it has no significant effects on combustion stability. A control strategy of proper valve timing and spark timing is suggested in order to achieve a reduction in exhaust emissions and a stable operation of the engine in a cold start and idle operation.

EXHAUST GAS HEAT RECOVERY SYSTEM FOR PLANT BED HEATING IN GREENHOUSE PRODUCTION

  • Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.;Kang, G.C.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.639-646
    • /
    • 2000
  • Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season in Korea. However, since the heat efficiency of the heater is about 80%, considerable unused heat in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust gas heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The system consists of a heat exchanger made of copper pipes, ${\phi}\;12.7{\times}0.7t$ located inside the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tame The total heat exchanger area is $1.5m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to performance test it can recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690{\ell}$/hr from the waste heat discharged. The exhaust gas temperature left from the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{circ}C$ from $21^{circ}C$ at the water flow rate of $690{\ell}$/hr. And, the condensed water amount varies from 16 to $43m{\ell}$ at the same water circulation rates. This condensing heat recovery system can reduce boiler fuel consumption amount in a day by 34% according to the feasibility study of the actual mimitomato greenhouse. No combustion load was observed in the hot air heater.

  • PDF

Effects of Oxygen Concentration on the NOx Emission of Non-premixed Flame in Hot Exhaust Gas (고온 배기가스의 산소농도가 비예혼합화염의 NOx 발생에 미치는 영향)

  • Sohn, Hwa-Seung;Kim, Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.833-841
    • /
    • 2002
  • The present study examined the possibility of NOx reduction in the high temperature industrial furnaces, duct burner of gas turbine cogeneration and two-stage gas turbine combustor. The experimental study was carried out for the non-premixed flame of second stage combustor with the variations of oxygen concentration in the hot exhaust gas of first stage combustor. It also examined the flammability range, temperature and NOx, $CO_2$, $O_2$formation in the combustor with respect to oxygen concentration in which the fuel(natural gas) is supplying into the hot exhaust gas. The results show that the inner temperature of flame reaches 1,20$0^{\circ}C$ at EGR $O_2$23% and that 15ppm of NOx at EGR $O_2$15.5% increases up to 60ppm at EGR $O_2$23%. It is believed that Fenimore's prompt NOx mechanism is more influential on the NOx formation than Zeldovich's thermal NOx mechanism does.

A study on temperature characteristic of the gases supplied to SOFC system by utilizing the ship exhaust gas (선박 배기가스 활용에 따른 SOFC 시스템 공급가스의 온도특성에 관한 연구)

  • Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.822-828
    • /
    • 2013
  • Since the operating temperature of Solid Oxide Fuel Cell (SOFC) is high, the heat management of the gases supplied to fuel cell system is important. In this paper, the temperature characteristic of the gases supplied to the anode and the cathode of the fuel cell is studied in case of utilizing the waste heat contained in the ship exhaust gas as a heat source to heat up the fuel, gas and water supplied to a 500kW SOFC system for a ship power. For the fuel cell system proposed in this paper, the temperature of gases supplied to the anode and the cathode was the highest temperature at 963K when the exhaust gas of the fuel cell was utilized as the heat source for gases supplied to fuel cell system instead of utilizing the ship exhaust gas. In addition, the engine power did not effect on the temperature of gases supplied to the fuel cell stack.