• Title/Summary/Keyword: Exhaust gas temperature

Search Result 736, Processing Time 0.024 seconds

A Experimental Study for Improving Performance of Igniter for Amateur Small Rockets (아마추어 소형로켓 점화기 성능 향상을 위한 실험적 연구)

  • Sim, Ju-Hyen;Lim, Seung-Vin;Park, Sang-Sub;Park, Wan-Ju;Lee, Jin-Sung;Choi, Jae-Won;Hong, Ju-Hyun;Chae, Jae-Ou
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.353-358
    • /
    • 2008
  • Inha Rocket Research Institute has made the igniter that is combination of black powder and PVA polymer for ignition small rocket. But recent igniter is not satisfy because of the performance of igniter is not identified. So, we confirmed requirement of igniter by comparing of ratio of black powder and PVA through experimental method. Especially we studied with ignition temperature for propellant and stable combustion pressure that is requirements of propellant. We can know the tendency of combustion properties by ratio of oxidizer and combustion catalyst through changing of temperature and pressure of exhaust gas of igniter.

  • PDF

Control Oriented Storage and Reduction Modeling of the Lean NOx Trap Catalyst (제어를 위한 Lean NOx Trap의 흡장 및 환원 모델링)

  • Lee, Byoungsoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • A control oriented model of the Lean $NO_x$ trap (LNT) was developed to determine the timing of $NO_x$ regeneration. The LNT model consists of $NO_x$ storage and reduction model. Once $NO_x$ is stored ($NO_x$ storage model), at the right timing $NO_x$ should be released and then reduced ($NO_x$ reduction model) with reductants on the catalyst active sites, called regeneration. The $NO_x$ storage model simulates the degree of stored $NO_x$ in the LNT. It is structured by an instantaneous $NO_x$ storage efficiency and the $NO_x$ storage capacity model. The $NO_x$ storge capacity model was modeled to have a Gaussian distribution with a function of exhaust gas temperature. $NO_x$ release and reduction reactions for the $NO_x$ reduction model were modeled as Arrhenius equations. The parameter identification was optimally performed by the data of the bench flow reactor test results at space velocity 50,000/hr, 80,000/hr, and temperature of $250-500^{\circ}C$. The LNT model state, storage fraction indicates the degree of stored $NO_x$ in the LNT and thus, the timing of the regeneration can be determined based on it. For practical purpose, this model will be verified more completely by engine test data which simulate the NEDC transient mode.

Thermal and Creep Analysis of an Exhaust Duct of Smart UAV with FGM (경사기능재료를 사용한 스마트 무인기 덕트의 열해석과 크리프 해석)

  • Im, Jong-Bin;Park, Jeong-Seon;Yun, Dong-Yeong;Lee, Jeong-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.65-73
    • /
    • 2006
  • The high temperature occurs due to the combustion gas from engine in unmanned aerial vehicles (UAV). The high temperature may cause serious damages in UAV structure. The Functionally Graded Material (FGM) is chosen as a candidate material of the engine duct structure. A functionally graded material (FGM) is a two- component mixture composed by compositional gradient materials from one material to the other. In contrast, traditional composite materials are homogeneous mixtures, and involve compositions between the desirable properties of the component materials. Since significant proportions of an FGM contain the pure form of each material, the need for compromise is eliminated. The properties of both components can be fully utilized. Thermal stress analysis of FGM layers (20, 40, 60, 80 and 100) is performed in this paper. In addition, the creep behavior of FGM applied in duct structure of an engine is analyzed for better understanding of FGM characteristics.

Performance Design of Boiler for Waste Heat Recovery of Engine Coolant by Rankine Steam Cycle (엔진 냉각수 폐열 회수를 위한 랭킨 스팀 사이클용 보일러의 성능 설계)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Hwang, Jae-Soon;Lee, Heon-Kyun;Lee, Dong-Hyuk;Park, Jeong-Sang;Lee, Hong-Yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.58-66
    • /
    • 2011
  • A 2-loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop(HT loop) is a system to recover the waste heat from the exhaust gas, a low temperature loop(LT loop) is for heat recovery from the engine coolant cold relatively. This paper has dealt with a layout of a LT loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the LT boiler, a core part of a LT loop, has been presented and analytically investigated. Considering the characteristics of the cycle, the basic concept of the LT boiler has been determined as a shell-and tube type counterflow heat exchanger, the performance characteristics for various design parameters were investigated.

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

A study on the characterization of shear surface according to shear rate and shear mechanism in high temperature shear process of boron steel (보론강 고온전단공정에서 전단속도 및 메커니즘에 따른 전단면 특성 파악에 관한 연구)

  • Jeon, Yong-Jun;Choi, Hyun-Seok;Lee, Hwan-Ju;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.37-41
    • /
    • 2017
  • With light vehicle weight gradually becoming ever more importance due to tightened exhaust gas regulations, hot-stamping processing using boron alloyed steel is being applied more and more by major automobile OEMs since process assures both moldability and a high strength of 1.5 GPa. Although laser trimming is generally applied to the post-processing of the hot-stamped process with high strength, there have been many studies of in-die hot trimming using shear dies during the quenching of material in order to shorten processing times. As such, this study investigated the effects of the Shear rate and Shear mechanism on shear processes during the quenching process of hot-stamping material. In case of pad variable, padding force is very weak compared with shear force, so it does not affect the shear surface. In case of shear rate, the higher the shear at high temperatures and the higher the friction effect. As a result the rollover and the fracture distribution decreased, and the burnish distribution increased. Therefore, it is considered that the shear quality is guaranteed when high shear rate is applied in high temperature shear process.

A Study on the Structural Stability of Nozzle Manufactured with 5-axis Machining (5축 가공으로 제작한 노즐의 구조 안정성에 관한 연구)

  • Changwook Lee;Yongseok Park;DuckYong Jo;Seong Man Choi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.44-51
    • /
    • 2022
  • In this study, 5-axis machining was proposed as a method for manufacturing a nozzle with a curved shape, and flow analysis and structural analysis were used for structural validation of the manufactured geometry. The program used for CFD obtained the internal temperature and pressure distribution of the nozzle using STAR-CCM+ and used it as the boundary condition for structural analysis. For structural analysis, the commercial program NASTRAN was used, and stress was calculated using the von-mises technique. Based on the maximum stress value generated, the safety margin was 0.78 and the safety margin of the bearing stress was 46.8. In addition, the creep life was calculated as 9.97 x 1012 hours using the Larson-Miller parametric method and applying the maximum stress value of 187 MPa and the exhaust gas perfectly mixed temperature of 463 K.

A Study on the Pyrolysis System Development for Oil Recovery from Waste Fishing Nets and Ropes (오일 회수를 위한 폐로프와 폐어망 열분해 장치 개발에 대한 연구)

  • Kim Yong-Seop;Yu Jeong Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.43-51
    • /
    • 2001
  • Now our ocean environment pollution is very serious. Its harm hinders in marine breeding and the safe navigation of ships at the coast. We have used an assembly system for a measure taken against environment pollution like this. But, here are some problems awaiting solution. First, most of combustible materials among ocean waste are high polymer, so it is necessary some special equipment to incinerate them. In the process we can't overlook air pollution by exhaust gas. Also, when we reclaim these wastes, we remember that they can't be decomposed naturally and leaking water may pollute soil. Thus now a days new treatment method has been developed, it recycles and doesn't product secondary pollution materials by recovering oil from pyrolysis. For it, this study investigated chemicalㆍphysical properties of wastes. And it found condition of recovering the most oil. Also it probed that the variation of temperature raising speed affects the weight reduction characteristics of wastes. Also, while studying recovered oil by waste pyrolysis and the rate of non-condensing gas in accordance with the variation of temperature raising speed. Finally we had confidence the development of pyrolysis oil recovery would succeed because we carried out evaluation at an economic point of view about it.

  • PDF

A Study on Combustion Characteristics in terms of the Type of Fuel Supply Device (Feeder) of a Wood Pellet Boiler (목재펠릿보일러의 연료공급 장치의 형태에 따른 연소특성에 관한 연구)

  • Choi, Yun Sung;Euh, Seung Hee;Oh, Kwang Cheol;Kim, Dae Hyun;Oh, Jae Heun
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.120-128
    • /
    • 2015
  • This study reports the combustion characteristics, such as burner temperature and the concentration of exhausted gas ($O_2$, $CO_x$, $NO_x$) due to the different types and pitches of the fuel supply feeder of the wood pellet boiler. The 1st grade wood pellets composed of mainly larch have been used for the experiment. In case of using the spring feeder, mean temperature of burner was approximately $821.76^{\circ}C$, and the mean concentration of oxygen, carbon monoxide, carbon dioxide and nitrogen oxide were approximately 8.88%, 93.35ppm, 12.15% and 139.83 ppm, respectively. The test result with the spring feeder was shown to approach the condition of complete combustion compared to that of a screw feeder and were in good agreement with authentication judgement standard. Furthermore, the combustion efficiency was improved according to the growth of screw pitch. The control of air flow rate from the blower and ventilator is needed to achieve the complete combustion.

Effects of Ceria and CO Reductant on $N_2O$ Decomposition over the Layered Mixed Oxide Catalysts (층상 혼합금속산화물 촉매에 의한 $N_2O$ 분해에서 Ceria 첨가 및 CO 환원제의 영향)

  • Yang, Ki-Seon;Chang, Kil-Sang
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • Nitrous oxide ($N_2O$) is a greenhouse material which is hard to remove. Even with a catalytic process it requires a reaction temperature, at least, higher than 670 K. This study has been performed to see the effects of Ce addition to the mixed oxide catalyst which shows the highest activity in decomposing $N_2O$ completely at temperature as low as 473 K when CO is used as a reducing agent. Mixed metal oxide(MMO) catalyst was made through co-precipitation process with small amount of Ce added to the base components of Co, Al and Rh or Pd. Consequently, the surface area of the catalyst decreased with the contents of Ce, and the catalytic activity of direct decomposition of $N_2O$ also decreased. However, in the presence of CO, the activity was found high enough to compensate the portion of activity decrease by Ce addition, so that it can be ascertained that the catalytic activity and stability can be maintained in the CO involved $N_2O$ reduction system when Ce is added for the physical stability of the catalyst.