• Title/Summary/Keyword: Exhaust gas composition

Search Result 80, Processing Time 0.024 seconds

Effects of Spark Plug Changes on Performance of an SI Engine Fueled by Gaseous Fuel (스파크플러그 변화에 따른 가스 엔진 성능 변화)

  • Lee, Sunyoup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.27-32
    • /
    • 2013
  • Renewable gas fuels such as biogas and landfill gas are obtained from the biodegradable organic wastes so that they inherently have carbon-neutral nature which can respond global warming. Therefore, attentions are paid to use this renewable gases as a main fuel for internal combustion engines. However, the composition of the fuel varies by its origin or conversion process, it is necessary to make stable combustion and accomplish high efficiency when used in power generating spark ignition (SI) engines. In this study, efforts have been made to investigate the effect of the composition of renewable gas fuel on the engine performance and exhaust emissions. In addition, a new spark plug with a long electrode was tested and compared with a base spark plug as a way to improve engine efficiency and reduce harmful emissions.

Analysis on the Combustion Characteristics of Low-Btu Synthetic Gases in Gas Engine (저발열량 합성가스의 가스엔진 내 연소 특성에 대한 해석)

  • Lee, Chan;Cho, Sang Mok
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.78-86
    • /
    • 2006
  • Computational analyses are conducted on the combustion characteristics of the coal- and the biomass-derived synthetic gases with low-Btu heating value in gas engine. Using thermochemical analyses on the synthetic gases, combustion pressure, temperature, exhaust gas composition, NO emission and engine power are predicted and the predicted results are compared with small-scale pilot engine test results. In order to investigate the unsteady combustion phenomena in gas engine combustion chamber, CFD analyses are carried out on the coal and the biomass synthetic gases and their computed results are compared to provide the guidelines for the design modification and the tuning of the gas engine burning the synthetic gases as alternative fuels.

  • PDF

The Study on the Supported Oxide Catalysts for Reducing CO Gas in Automotive Exhaust Gas (자동차 배기가스 중의 CO 가스 제거를 위한 촉매장치의 개발에 관한 연구)

  • Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.4
    • /
    • pp.179-187
    • /
    • 1980
  • Perovskite-type oxide catalysts in the $\textrm{LaMnO}_3$ family were prepared by both freeze drying and precipitation technique, and their catalytic activities with respect to the oxidation of CO with $O_2$ were measured in the composite gases. Freeze drying is a new technique for the prevention of migration of the solutes during drying. Therefore, the corrugated cordierite monolith fabricated with the Ø 1mm stainless steel bar was directly impregnated with nitrate solutions containing the appropriate cations, freeze dried and calcined. Precipitation was done by using $\textrm{(NH_4)}_2\textrm{CO}_3$ but the precipitated catalysts gave lower catalytic than the freeze dried samples due to, in part, relatively high calcining temperature. In this study, freeze dried composition had high catalytic activity, and their apparent activation energy for oxidation of CO was calculated by the rate plots using the data where the percent conversion of CO was less than 20%.

  • PDF

Structural and Electrical Properties of WOx Thin Films Deposited by Direct Current Reactive Sputtering for NOx Gas Sensor

  • Yoon, Young-Soo;Kim, Tae-Song;Park, Won-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.97-101
    • /
    • 2004
  • W $O_{x}$-based semiconductor type thin film gas sensor was fabricated for the detection of N $O_{x}$ by reactive d.c. sputtering method. The relative oxidation state of the deposited W $O_{x}$ films was approximately compared by the calculation of the difference of the binding energy between Ols to W4 $f_{7}$2/ core level XPS spectra in the standard W $O_3$ powder of known composition. As the annealing temperature increased from 500 to 80$0^{\circ}C$, relative oxygen contents and grain size of the sputtered films were gradually increased. As the results of sensitivity ( $R_{gas}$/ $R_{air}$) measurements for the 5 ppm N $O_2$ gas, the sensitivity was 110 and the sensor showed recovery time as fast as 200 s. The other sensor properties were examined in terms of surface microstructure, annealing temperature, and relative oxygen contents. These results indicated that the W $O_3$ thin film with well controlled structure is a good candidate for monitoring and controlling of automobile exhaust.haust.t.t.t.

Effect of the Properties of Diesel Engine Oil and Aging on Exhaust Gases and DPF (경유엔진용 윤활유의 성상 및 열화가 배출가스 및 후처리 장치에 미치는 영향 연구)

  • Kim, JeongHwan;Kim, KiHo;Lee, JungMin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.292-299
    • /
    • 2018
  • The objective of this research is to investigate the impact of engine oil aging on PM(Particulate Matter), exhaust gases, and DPF. It is widely known that the specification of a lubricant and its consumption in an ICE considerably influences the release of regulated harmful emissions under normal engine operating conditions. Considering DPF clogging phenomena associated with lubricant-derived soot/ash components, a simulated aging mode is designed for DPF to facilitate engine dynamometer testing. A PM/ash accumulation cycle is developed by considering real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for ash accumulation. The test duration for DPF aging is approximately 300 h with high- and low-SAPs engine oils. Detailed engine lubricant properties of new and aged oils are analyzed to evaluate the effect of engine oil degradation on vehicle mileage. Furthermore, physical and chemical analyses are performed using X-CT, ICP, and TGA/DSC to quantify the engine oil contribution on the PM composition. This is achieved by sampling with various filters using specially designed PM sampling equipment. Using high SAPs engine oil causes more PM/ash accumulation compared with low SAPs engine oils and this could accelerate fouling of the EGR in the engine, which results in an increase in harmful exhaust gas emissions. These test results on engine lubricants under operating conditions will assist in the establishment of regulated and unregulated toxic emissions policies and lubricant quality standards.

Numerical Analysis of Flow Uniformity in Selective Catalytic Reduction (SCR) Process Using Computational Fluid Dynamics (CFD)

  • Shon, Byung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.295-306
    • /
    • 2022
  • The NOx removal performance of the SCR process depends on various factors such as catalytic factors (catalyst composition, shape, space velocity, etc.), temperature and flow rate distribution of the exhaust gas. Among them, the uniformity of the flow flowing into the catalyst bed plays the most important role. In this study, the flow characteristics in the SCR reactor in the design stage were simulated using a three-dimensional numerical analysis technique to confirm the uniformity of the airflow. Due to the limitation of the installation space, the shape of the inlet duct was compared with the two types of inlet duct shape because there were many curved sections of the inlet duct and the duct size margin was not large. The effect of inlet duct shape, guide vane or mixer installation, and venturi shape change on SCR reactor internal flow, airflow uniformity, and space utilization rate of ammonia concentration were studied. It was found that the uniformity of the airflow reaching the catalyst layer was greatly improved when an inlet duct with a shape that could suppress drift was applied and guide vanes were installed in the curved part of the inlet duct to properly distribute the process gas. In addition, the space utilization rate was greatly improved when the duct at the rear of the nozzle was applied as a venturi type rather than a mixer for uniform distribution of ammonia gas.

A study on the electronic EGR valve control method (전자식 EGR밸브 제어기법에 관한 연구)

  • Choi, Sang-Yun;Lee, Sang-Hun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2594-2602
    • /
    • 2014
  • As environmental awareness increases, regulations on exhaust gas of automobile, which is a cause of air pollution, have been strengthened. In order to meet emission regulation, automobile companies and engine manufacturers have actively developed the related technologies. Because the emission control has become severe, the systems using electronic motor or solenoid valve for high precise control are needed. For this reason, it is required not only the optimization of composition of components for improving performance and efficiency of the system but also the development of optimal design technology of electronic control system by securing the designing and manufacturing technology of the components. In this paper, it is proposed the position characteristics for electronic EGR valve module through the applied control logic and experiment results.

A Study on the Evaluation of DCSG Steam Efficiency of Oil Sand Plants for Underground Resources Development (지하자원개발을 위한 오일샌드플랜트의 DCSG 증기생산효율 평가에 관한 연구)

  • Young Bae Kim;Kijin Jeong;Woohyun Jung;Seok Woo Chung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • Steam assisted gravity drainage(SAGD) is a process that drills well in the underground oil sands layer, injects hightemperature steam, lowers the viscosity of buried bitumen, and recovers it to the ground. Recently, direct contact steam generator(DCSG) is being developed to maximize steam efficiency for SAGD process. The DCSG requires high technology to achieve pressurized combustion and steam generation in accordance with underground pressurized conditions. Therefore, it is necessary to develop a combustion technology that can control the heat load and exhaust gas composition. In this study, process analysis of high-pressurized DCSG was conducted to apply oxygen enrichment technology in which nitrogen of the air was partially removed for increasing steam production and reducing fuel consumption. As the process analysis conditions, methane as the fuel and normal air or oxygen enriched air as the oxidizing agent were applied to high-pressurized DCSG process model. A simple combustion reaction program was used to calculate the property variations for combustion temperature, steam ratio and residual heat in exhaust gas. As a major results, the steam production efficiency of DCSG using the pure oxygen was about 6% higher than that of the normal air due to the reducing nitrogen in the air. The results of this study will be used as operating data to test the demonstration device.

A Study on Combustion and Exhaust Emission in Direct Injection Diesel Engine (직접분사식 디젤기관의 연소 및 배기에 관한 연구)

  • Kim, Du-Beom;Kim, Gi-Bok;Kim, Chi-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.105-113
    • /
    • 2017
  • Recently the direct injection diesel engine is the most efficient one available for road vehicles, so this fundamental advantage suggests the compression injection diesel engine are a wise choice for future development efforts. The compression ignition diesel engine, with its bigger compression ratios if compared to the SI engine, offers a higher thermodynamic efficiency, also additionally the diesel engine with its less pumping losses due to the throttled intake charge as in a SI engine has higher fuel economy. But the largest obstacle to the success of this engine is meeting emission standards for Nitric oxides and particulate matter while maintain fuel consumption advantage over currently available engines. Thus its use should be largely promoted, however, diesel engine emits more Nitric oxides and particulate matter than other competing one. There has been a trade-off between PM and NOx, so efforts to reduce NOx have increased PM and vice versa, but trap change this situation and better possibility emerge for treating NOx emission with engine related means, such as injection timing, equivalence ratio, charge composition, and engine speed. The common rail direct injection system is able to adjust the fuel injection timing in a compression ignition engine, so this electronically controlled injection system can reduce the formation of NOx gas without increase in soot. In this study it is designed and used the engine test bed which is installed with turbocharge and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters.

A Study on the VOCs Emission Characteristics of RV and MPV (RV차량 및 소형승합차량의 휘발성유기화합물 배출특성 연구)

  • Mun, Sunhee;Hong, Heekyoung;Kim, Sunmoon;Seo, Seokjun;Jung, Sungwoon;Chung, Taekho;Hong, Youdeog;Kim, Jounghwa
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.66-73
    • /
    • 2018
  • Volatile organic compounds (VOCs) are well known as ozone precursors from photochemical reactions and contribute to the formation of photochemical smog which pose health hazards. Also, some of these compounds directly affect the human health due to their toxicity such as benzene. In this study, NMVOCs composition in exhaust gas from recreational vehicle (RV) and (MPV) were characterized using a chassis dynamometer. The results for NMVOCs have reported that alkanes emission was higher than alkenes, aromatics and cycloalkanes due to reactive of diesel oxidation catalysts. The NMVOCs composition according to carbon number was highly distributed between C3 and C6~C8. During the engine cold start condition, NMVOCs emission was higher compared to the engine hot start condition due to the increased catalytic activity. The NMVOCs emission with DPF increased compared to that without DPF. The results of this study will be provide to calculate VOCs emissions from mobile source.