• 제목/요약/키워드: Exhaust gas composition

검색결과 80건 처리시간 0.018초

배기가스 온도 및 조성 변화에 따른 CDPF의 재생 특성에 관한 실험적 연구 (An Experimental Study on Regeneration Characteristics of Catalyzed Diesel Particulate Filter with Variation of Exhaust Gas Temperature and Composition)

  • 조용석;이정섭;윤여빈;박영준;이성욱
    • 대한기계학회논문집B
    • /
    • 제32권8호
    • /
    • pp.597-603
    • /
    • 2008
  • The catalyzed diesel particulate filter (CDPF) is widely used for collecting soot from the exhaust gas of diesel engine. However, the CDPF need being regenerated after the soot accumulation. It is important to know characteristics of regeneration for CDPF with variation of exhaust gas temperature and composition. This study presents characteristics of regeneration according to variable exhaust gas composition. Furthermore, the experiment were performed variable gas temperature of CDPF inlet gas at each exhaust gas composition. Test-rig is used to control at each in let gas temperature and composition during regeneration of CDPF. Reaction intensity($I_c$) is used to compare with each result. Experimental results indicated that increased concentration of $NO_x$ and $O_2$ lead to regenerate more greatly. Also, higher temperature of exhaust gas leads to make CDPF cleaner.

엔진 배기가스 성분 측정 을 위한 Gas Chromatograph 의 이용 (The Use of Gas Chromatograph for the Measurement of Engine Exhaust Gas Composition)

  • 김승수;정영교
    • 대한기계학회논문집
    • /
    • 제9권6호
    • /
    • pp.743-749
    • /
    • 1985
  • 본 연구에서는 Gas Chromatograph를 사용하여 1,500㏄급 국산 소형 승용차 엔 진의 배기가스 성분을 분석하였다. 그리고 이를 통하여 배개가스 성분 분석에 Gas Chromatograph를 사용할 경우 아래와 같은 점에 유의한다면 배기가스 성분을 비교적 정확하게 측정할 수 있다는 것을 확인하였다.

배기관에서의 합성가스 연소에 따른 배기가스 온도 및 농도 변화에 관한 실험적 연구 (An Experimental Study on Variations of Exhaust Gas Temperature and Concentration with Synthetic Gas Combustion in Exhaust Manifold)

  • 조용석;이성욱;양승일;송춘섭;박영준
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.56-62
    • /
    • 2008
  • A synthetic gas reformed from hydrocarbon-based fuels consists of $H_2$, CO and $N_2$. Hydrogen contained in the synthetic gas is a very useful species in chemical processes, due to its wide flammability range and fast burning speed. The ESGI (Exhaust Synthetic Gas Injection) technology is developed to shorten the light-off time of three way catalysts through combustion of the synthetic gas in the exhaust manifold during the cold start period of SI engines. Before the ESGI technology is applied to the test engine, the authors set a test rig that consists of gas temperature and composition controllers, an exhaust pulse generator and an exhaust manifold with a visualization window, in order to optimize the point and conditions of injection of the synthetic gas. Through measuring burned gas temperatures and taking photographs of synthetic gas combustion at the outlet of the exhaust manifold, the authors tried to find the optimal injection point and conditions. Analysis of burned gas composition has been performed for various $O_2$ concentrations. As a result, when the synthetic gas is injected at the port outlet of the cylinder No. 4 and $O_2$ concentration exceeds 4%, combustion of the synthetic gas is strong and effective in the exhaust manifold.

연료의 조성변화가 천연가스차량의 연비 및 배출가스 특성에 미치는 영향 (Effect of Gas Compositions on Fuel Economy and Exhaust Emissions of Natural Gas Vehicles)

  • 이영재;김강출
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.123-131
    • /
    • 1999
  • Natural gas is one of the most promising alternative fuels for automotive vehicles. However, natural gas varies in compositional between the originating fields and may be further modified due to processing and additional mixing. These variations are known to affect engine performance and emissions through changes in fuel metering and combustion characteristics. In the present study, the effect of gas compositions on vehicle performance such as fuel economy, driveability and exhaust emissions was examined. Analysis are made of using 3 types of NGVs which were made by automakers and 6 different fuels which are selected in consideration of the variation in fuel composition on the worldwide market. The results may be utilized to develop natural gas natural gas engine in automaekrs and/or to establish the fuel standard in the refueling stations.

  • PDF

대형천연가스차량에서 촉매시뮬레이션에 의한 배출가스의 변환율 예측 연구 (A Conversion Rate Prediction Study of Exhaust Gas by Catalyst Simulation in Heavy Duty Natural Gas Vehicle)

  • 한영출;오용석;강호인
    • 한국대기환경학회지
    • /
    • 제16권3호
    • /
    • pp.257-264
    • /
    • 2000
  • An aftertreatment device which reduce exhaust gas of natural gas vehicle(NGV), NGV catalyst has important meaning as to reduce the exhaust emission. In this study, the characteristics of NGV catalyst were investigated and the effect parameters of NGV catalyst were analyzed and were predicted by changing the various parameters such as temperature, and gas concentration. The conversion efficiency of NGV catalyst converter was also predicted by Pd-loading, mass flow rate and gas composition.

  • PDF

배기가스의 온도 및 HC와 $O_2$의 조성 변화에 따른 DOC-CDPF의 재생 특성에 관한 실험적 연구 (An Experimental Study on Regeneration Characteristics by Variation of Exhaust Gas Temperature, HC and $O_2$ Concentrations on DOC-CDPF System)

  • 조용석;이성욱;이정섭;윤여빈;박영준
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.43-49
    • /
    • 2009
  • A catalyzed diesel particulate filter (CDPF) causes the progressive increase in back pressure of an exhaust system due to the loading of soot particles. To minimize pressure drop which is generated by CDPF, the filter should be regenerated when it collects a certain quantity of soot. It is important to know characteristics of regeneration of CDPF with various of exhaust gas temperatures and compositions. The oxidation of HC in DOC leads to increase gas temperature of DOC downstream. The increased gas temperature by DOC has an positive effect on CDPF regeneration. This study presents characteristics of regeneration of CDPF with DOC according to various gas composition, such as HC and $O_2$ concentration. The test-rig is used to control each gas composition and temperature during regeneration of CDPF. Experimental results indicate that the increased concentration of $O_2$ regenerates DPF more actively. With increasing HC concentration, the gas temperature of CDPF upstream increased due to more oxidation of HC. But excessive supply of HC leads to decrease of $O_2$ concentration in the CDPF, which makes it hard to regenerate CDPF.

커먼레일 디젤엔진에서 후분사 변화가 배출가스 성분 및 온도 변화에 미치는 영향에 대한 실험적 연구 (The experimental study of post injection effect on exhaust gas temperature and composition in a common rail DI diesel engine)

  • 정재욱;장동훈;박정규;전광민
    • 한국분무공학회지
    • /
    • 제9권1호
    • /
    • pp.15-20
    • /
    • 2004
  • The post injection effect to enhance aftertreatment devices' performance is essential to meet future stringent emission standards by controlling exhaust gas temperature and emission pollutants. The test has been made with commercial common rail diesel engine by post injection manipulation, to optimize exhaust gas temperature while guarantee low fuel penalty. The optimization was done at 1500, 2000 and 2500[rpm] for 2, 4[bar] condition which show low exhaust gas temperature. The main purpose of this test is dedicated to understand mechanism of exhaust gas temperature rise while optimizing

  • PDF

가스보일러 일산화탄소 제어에 관한 연구 (A Study on the Control of the Exhaust CO from Gas Boiler)

  • 조영도;최경석;김지윤;깅창연
    • 한국가스학회지
    • /
    • 제5권1호
    • /
    • pp.7-14
    • /
    • 2001
  • 가정집 가스보일러 배기가스 조성에 대하여 열역학적 관점에서 해석하였고 일산화탄소 센서의 특성에 대하여 고찰하였다. 배기가스의 조성 측정으로부터 보일러 연소조건을 예측할 수 있음을 본 연구에서 제시하였다. 즉 배기가스중의 산소농도로부터 과잉 공기량을 예측할 수 있고, 배기가스중의 일산화탄소와 수소의 비율로부터 보일러 연소실 온도를 알 수 있다. 가정집에 설치되어 있는 보일러의 배기가스 조성 해석으로부터 과잉 공기량이 약 $55\~110\%$임을 알 수 있었다. 따라서 가정집 가스보일러에서 발생하는 일산화탄소는 연소가스의 유속구배에 의한 난류에 의한 국부냉각 또는 벽에 의한 국부냉각으로 등에 의하여 발생하는 것으로 사료된다. CO센서의 출력전압은 수소와 일산화탄소의 농도에 선형적으로 비례하며, 보일러에서 일산화탄소 발생을 CO센서와 연동제어로 감소시킬 수 있다.

  • PDF

A Study on the Performance of an LPG (Liquefied Petroleum Gas) Engine Converted from a Compression Ignition Engine

  • Choi, Gyeung-Ho;Kim, Tae-Kwon;Cho, Ung-Lae;Chung, Yon-Jong;Caton, Jerald;Han, Sung-Bin
    • 에너지공학
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2007
  • The purpose of this study was to investigate the reduction of exhaust gas temperature in a LPG engine that had been converted from a diesel engine. A conventional diesel engine was modified to a LPG (Liquefied Petroleum Gas) engine by replacing the diesel fuel injection pump with a LPG fuel system. The research was performed by measuring the exhaust gas temperature upon varying spark ignition timing, airfuel ratio, compression ratio, and different compositions of butane and propane. Engine power and exhaust temperature were not influenced by various butane/propane fuel compositions. Finally, among the parameters studied in this investigation, spark ignition timing is one of the most important in reducing exhaust gas temperature.

단기통 4사이클 스파아크 점화기관 흡.배기 과정의 시뮬레이션 (Simulation of the gas exchange process for single-cylinder 4-stroke cycle spark ignition engine)

  • 윤건식;유병철
    • 오토저널
    • /
    • 제7권1호
    • /
    • pp.24-34
    • /
    • 1985
  • The study of unsteady gas exchange processes in the inlet and exhaust systems of the single-cylinder 4-stroke cycle spark ignition engine is presented in this paper. The generalized method of characteristics including friction, heat transfer, change of flow area and entropy gradients was used for solving the equations defining the gas exchange process. The path line calculation was also conducted to allow for calculation of the gas composition and entropy change along the path lines, and of the variable specific heat due to the change of temperature and composition. As the result of the simulation, the properties at each point in the inlet and exhaust pipe, pressure and temperature in the cylinder, and charging efficiency were obtained. Pumping loss and residual gas fraction were also computed. The effect of engine speed, exhaust and inlet pipe length on the pumping loss and charging efficiency were studied showing that the results were in agreement with what has been known from experiments.

  • PDF