• Title/Summary/Keyword: Exhaust air

Search Result 1,335, Processing Time 0.024 seconds

Correlation Analysis of Parameters affecting Pressure Distributions in Vertical Shafts by Design of Experiments (실험계획법에 의한 수직샤프트내 압력분포에 영향을 미치는 인자간 상관관계 분석)

  • Han, Hwa-Taik;Shin, Chul-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.883-888
    • /
    • 2008
  • Various effluents generated in cooking processes contribute a great deal to indoor air pollution among many other indoor pollutants such as dusts from outdoor and carbon dioxide from human body. Kitchen exhaust hoods are not believed to exhaust indoor contaminants properly in many cases, while generating too much noise. Instead of focusing on individual products of kitchen hoods, we should address the problem by attacking the ventilation system as a whole including vertical shafts and building air-tightness. In this study, it is intended to investigate the pressure distribution along the vertical shaft depending on various system parameters, such as shaft size, concurrent hood usage rate, roof fan, inlet pressure loss, and outdoor temperature. The maximum static pressure in the vertical shaft has been obtained using the method of design of experiments and analyzed by the analysis of variance. The results can be used for the design of kitchen exhaust systems by analyzing the pressure distributions in vertical shafts.

  • PDF

Ventilation Performance According to Outdoor and Operating Conditions of the Vertical Exhaust Duct System in High Riser Public Houses (초고층 공동주택의 입상덕트 환기시스템에서 외기조건과 작동조건에 따른 환기성능평가)

  • Kim, Young-Bae;Kim, Jae-Hong;Sung, Jae-Yong;Lee, Myeong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2011
  • The ventilation performance of a vertical exhaust duct system in the high riser public house has been evaluated by a commercial software, Fluid Flow, which solves pressure losses through the duct system including bathroom fans and a hybrid roof fan. During the numerical simulations, outdoor wind condition and stack effects in summer and winter were considered as well as the operating conditions of a basement damper and the roof fan. The results show that the bathroom ventilation in summer is the most unsatisfactory. The opening of the basement damper has a problem that the polluted air in the lower floors is exhausted to the underground parking lot, not to the rooftop. If the basement damper is closed, the exhaust flow rate in the lower floors is not sufficient due to the strong flow resistance in the long vertical duct even though the roof fan is under operating.

Comparison of Exhaust Gas Recirculation and Excess Air Strategies for Improving Thermal Efficiency and Reducing Nitrogen Oxides emissions in Hydrogen Spark-ignition Engines at Low-load Operation (수소 스파크점화 엔진의 저부하 운전에서 열효율 및 질소산화물 배출 개선을 위한 배기가스재순환과 과잉공기 전략 비교)

  • Hyunwook Park;Junsun Lee;Seungmook Oh;Yonggyu Lee;Changup Kim
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.60-67
    • /
    • 2024
  • This study compared exhaust gas recirculation (EGR) and excess air strategies for improving thermal efficiency and emissions of hydrogen combustion engines at low-load operation. The experimental investigation was conducted in a single-cylinder, heavy-duty engine under throttling and wide-open throttle (WOT) conditions. Although both EGR and excess air strategies reduced peak heat release rates and increased combustion durations, the net indicated thermal efficiencies were improved by reducing the pumping losses. Under the constraint of similar nitrogen oxides emissions, the EGR strategy had higher net indicated thermal efficiencies compared to the excess air strategy in throttling operation. However, the difference between their thermal efficiencies was reduced under WOT condition. The trend of reducing nitrogen oxides emissions according to the two strategies was similar.

A Study on the Characteristic of NOx Emissions by IMO Operating Modes in a Four Stroke Marine Power Generation Diesel Engine (선박 발전용 4행정 디젤엔진의 IMO 운전모드에 따른 NOx 배출특성에 관한 연구)

  • 김현규;김규보;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.457-465
    • /
    • 2004
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the performance and the emission characteristics of 4 stroke marine diesel engines for generation application in D2 cycle(IMO mode). The effects of important operating parameters, such as intake air pressure. intake air temperature and maximum combustion pressure on NOx emissions were also described. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that the maximum combustion pressure by fuel injection timing control and intake air temperature has strong influence on NOx emission production. But NOx emission is not affected by intake air pressure and exhaust gas back pressure.

A Study on the Wind Power Generation Using Vertical Exhaust Air Duct of the High-Rise Apartments (초고층 공동주택의 주방.욕실 배기 풍속을 풍력발전에 활용하는 방안)

  • Lee, Yong-Ho;Kim, Seong-Yong;Hwang, Jung-Ha;Park, Jin-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • The purpose of this study was to promote the utilization of wind velocity of kitchen and bathroom exhaust ducts for wind power generation in high-rise apartments. The research content can be summarized as follows: 1) Nine high-rise apartments were examined for the installation of kitchen and bathroom exhaust ducts located in the pipe shaft (PS) section. After selecting simulation candidates, a simulation was performed with the STAR-CCM+ Ver 5.06 program. 2) Of nine high-rise apartments, seven had kitchen and bathroom exhaust ducts, whose cross section was in the range of $0.16m^2{\sim}0.4m^2$. The area ratio between the exhaust ducts and PS section (cross section of exhaust duct/area of PS section ${\times}$ 100) was on average 3.2%. 3) The simulation results were analyzed. As a result, the smaller cross section kitchen and bathroom exhaust ducts had, the more advantages there were for increasing exhaust wind velocity. If an out air inlet duct is installed to the old kitchen and bathroom exhaust ducts, it will increase exhaust wind velocity by 3.01~3.98m/s and contribute to the proper wind velocity level (3.0m/s). 4) When the simultaneous usage rate between the kitchen and bathroom exhaust fan increased from 20% to 60%, exhaust wind velocity increased. The "entire house holds" condition for exhaust fan operation provided more even exhaust wind velocity than the "some house holds" condition. 5) Exhaust wind velocity increased in the order of amplified (T-3), induced (T-2) and vertical (T-1) top of kitchen and bathroom exhaust ducts. Of them, the amplified type (T-3) was under the least influence of external wind velocity and thus the most proper for kitchen and bathroom exhaust duct tops.

An Experimental Study on the Analysis of Exhaust Gas Concentration by Using DMC in Diesel Engine (디젤엔진에서 DMC를 사용한 경우의 배기가스의 농도분석에 관한 실험적 연구)

  • 최승훈;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • Recently, Our planet is faced with very serious problems related to the air pollution due to the exhaust emissions of the diesel engine. So, lots of researchers have studied to reduce the exhaust emissions of diesel engine that influenced the environment strong. But most researchers have mainly studied and suggested the solution of reduction on the total exhaust emissions of diesel engine. In this study, the quantities of the low and high hydrocarbon among the exhaust emissions in diesel engine have been investigated by the quantitative analysis of the hydrocarbon C1~C6 using the gas chromatography. This study carried out by comparing the chromatograms with diesel fuel and mixed fuel which are blended the diesel and DMC(dimethyl carbonate)that includes the oxygen of about 53%. The results of this study show that the hydrocarbon C1~C6 among the exhaust emissions of the mixed fuel are exhausted lower than those of the diesel fuel at the all load.

  • PDF

Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse (온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF

CFD interpretation of gas flow around Ship's Funnel and Optimum Design Criterion (선박 연돌 형상이 배기가스 흐름에 미치는 영향과 연돌 설계)

  • Shin, Hyun-Joon;Park, Sang-Min;Kim, Jong-Hwa
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.63-69
    • /
    • 2011
  • Exhaust gases of a vessel from a main engine, a diesel generator and an incinerator contain very harmful substances like soot, $SO_2$ and NOx. Careful design of funnel shape is required to prevent those harmful exhaust gases from influencing on accommodation and a fan room. Meanwhile, the exhaust gases are also hot enough to damage electronic devices like radar. Therefore the funnel design should be considered so that electronic devices are not directly exposed to the exhaust gas in the strong stern wind. This study may propose guidelines of optimum design criterion for the anti-thermal damage design of the electronic devices and anti-recirculating design of harmful exhaust gas near the accommodation. From CFD analyses, we can understand that the major factors affecting the exhaust gas dispersion are the large scale mixing by separation vortices and the sluggish flow in the recirculation region. We hope that the funnel flow analysis around ship's funnel is used for practical optimum funnel design to minimize the exhaust gas dispersion by adjusting the funnel shape, the position of the exhaust pipe, the shape of bulwark, the exhaust direction of air ventilated an engine room and the angle of the exhaust pipe.

  • PDF

A study on the exhaust gas recirculation in a MILD combustion furnace by using a Venturi nozzle (MILD 이용한 배기가스 재순환에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.413-419
    • /
    • 2013
  • The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of venturi nozzle geometrical parameters, nozzle position, nozzle gap between high pressure air nozzle and venturi nozzle, and with the change of high pressure nozzle inlet velocity. The entrainment flow rate for the case with the high pressure air nozzle attached at the exhaust gas wall has relatively small change with the change of nozzle gap. That for the case with the high pressure air nozzle exposed to the exhaust gas has monotonically increase with the change of nozzle gap. The flow rate ratio of entrainment flow rate has considerably increase tendency with relatively lower air inlet velocity, on the other hand, that with relatively higher air inlet velocity could be seen relatively small increase.

A study on the improvement of the air exhaust system at the PSD installed subway station (도시철도 지하역사 PSD 설치에 따른 배기시스템 개선 연구)

  • Kwon, Soon-Bark;Song, Ji-Han;Ryu, Ju-Hwan;Jo, Seung-Won;Oh, Tae-Suk;Bae, Sung-Joon;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.353-362
    • /
    • 2015
  • Platform screen door (PSD) installed at underground subway station has reduced the safety accident, but it may cause poor air ventilation condition due to the isolated exhaust duct in the subway tunnel area. In this study, the additional ventilation system was suggested, which can be installed at a void space (i.e., storage room under stairs) of platform in order to improve efficiency of air ventilation rate. Exhausted air from platform was directed to underneath of platform and joined with existing ventilation duct of train exhaust system (TES). One subway station in Seoul city was selected to predict the effectiveness of the suggested lower exhaust system by using the computational fluid dynamics (CFD) analysis. The predicted mean age of air was decreased by 16.5% which proves the improvement of air ventilation efficiency when the suggested lower exhaust system was applied.