• Title/Summary/Keyword: Exhaust air

Search Result 1,335, Processing Time 0.029 seconds

A Study on the Reduction of $NO_x$ Emission from Dual Fuel Engine for Co-generation System (열병합발적용 Dual Fuel Engine의 질소산화물 배출저감에 관한 연구)

  • 정일래;김용술;심용식
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 1991
  • This study shows the correlation between $NO_x$ emission in the exhaust gas and various operation factors of dual fuel engine for Co-generation system. General tendency was shown that the thermal efficiency was lowered by the change of operation factors. However these were not confirmed on this experiment. Increasing T4 temperature (exhaust gas temperature at turbo-charger inlet) reduces $NO_x$ emission rate. The higher T4 temperature requires lower excess air as the excess air ratio is controlled by T4 temperature on gas mode operation. Another tendency was that $NO_x$ emission rate is reduced in case of increasing boost air temperature, quantity of pilot oil or bypassing flue gas through the exhaust gas boiler. The diameter of the fuel injection nozzle was changed smaller than design value and the injection timing was readjusted. Thus $NO_x$ emission rate could be reduced as retarding injection timing and changing hole diameter of fuel injection nozzle, however maxium engine out-put was decreased by changing fuel nozzle on the diesel mode operation.

  • PDF

A Study on the Performance Prediction of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능예측에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Jin-Hyuck
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.294-299
    • /
    • 2005
  • In order to control indoor air quality and save energy. it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. Paper heat exchanger can recover $50{\sim}70$ of the enthalpy difference between supply and exhaust air. The purpose of this research is to obtain the experimental correlations for the friction factor, heat transfer coefficient, mass transfer coefficient and permeance of paper heat exchanger, which can be used for the performance prediction of the paper heat exchanger. Pressure drop at various velocities and heat transfer rate at various dry-bulb temperatures, relative humidities, and specific humidities are measured to make experimental correlations. The results of prediction using correlations show fairly good agreement with experimental data.

  • PDF

A Study on the Performance Improvement of Plastic Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 플라스틱 열교환기의 성능 향상에 관한 연구)

  • Kim, Jin-Hyuck;Yoo, Seong-Yeon;Han, Kyu-Hyun;Kang, Hyung-Chul;Yun, Hong-Ik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.328-333
    • /
    • 2008
  • In order to control indoor air quality and save energy, it is needed to install a suitable heat exchanger for heat recovery. A plastic heat exchanger have many advantages and can recover $50{\sim}80%$ of the temperature difference between supply and exhaust air. The purpose of this research is to evaluate the performance of plastic heat exchanger with different shapes. Pressure drop and heat transfer characteristics of plastic heat exchangers are investigated for various velocities.

  • PDF

The Experimental Study on Deflation of Air for Top-Down Joint area (역타기둥 이음부의 공기포 배출을 위한 실험적 연구)

  • 임형일;이동하;백민수;박병근;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.763-768
    • /
    • 2001
  • The purpose of this study is to research a specific material characteristics of top down concrete at column joint and to reduce column joint opening. Based on the established top down study, the experiment to apply an real construction case is performed. When the concrete placed into joint of top down column, raised air bubble is left as opening. This study is examined the incomplete packing reason in the top down column and found to air deflation method. The result of study is below (1) As the method to minimize column opening caused from confined air, it is required that an air exhaust port installation in joint column. (2) From air exhaust port installation, most of air bubble in column part is exhausted. As the concrete placing height is going up, air bubble size is going smaller.

  • PDF

A Study on the Risk Assessment and Reduction of Initial Construction Cost in a Biosafety Laboratory According to Improvement of Supply and Exhaust Method (급배기 방식 개선에 따른 생물안전 밀폐시설의 Risk Assessment와 초기 건설비 저감에 대한 연구)

  • Hwang, Ji Hyun;Hong, Jin Kwan;Ju, Young Duk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.534-539
    • /
    • 2013
  • In general, entire supply air of the BSL3 laboratory should be vented to the outside for its biosafety and the air conditioning system should always be operating to maintain a room pressure difference. In this regard, annual energy consumption is approximately five or ten times greater than the magnitude of the office building. In addition, to adjust room pressure difference to the set value efficiently, the supply and exhaust duct system are installed in each room of the BSL3 lab. Thus, initial construction cost is extremely high. In this study, multizone simulation is performed to estimate maintaining the appropriate room pressure difference in the case of changing model A (each room supply and exhaust system) to model B (each zone supply and exhaust system) for verification of the BSL3 lab biosafety. Also, in the case of these two models, the multizone simulation for three kinds of biohazard scenario is performed as part of risk assessment. The analysis of initial construction cost of two models is conducted for comparison. According to the studies, initial construction cost of model B is less than about 22% of existing model A. Moreover, biosafety of the BSL3 lab is still maintaining in the case of the two models.

Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization (배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석)

  • Kim, T. S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.290-297
    • /
    • 2002
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as cumbined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency by adopting air flow modulation was analyzed and it is concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

  • PDF

Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization (배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석)

  • Kim, T.S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.28-35
    • /
    • 2003
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as combined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency of the combined cycle by adopting air flow modulation was analyzed and it was concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

The Combustion Characteristics of Diesel Engine by the Water Injection through the Intake Port (I) (흡기관내로의 물 분사에 의한 디젤기관의 연소특성 (I))

  • Ryu, Kyung-Hyun;Yun, Yoong-Jin;Oh, Young-Taig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1756-1762
    • /
    • 2002
  • To effectively meet current regulations on the exhaust emissions of diesel engine required to control the deterioration of air pollution in the whole world, this study is to investigate the effects of water induction through the air intake system on the characteristics of combustion and exhaust emissions in IDI diesel engine. A method fur supplying water through the air intake system to reduce the exhaust emissions has been considered with other methods such as water introduction in the form of water-in-fuel emulsion or water injection directly into the combustion chamber, but it has not been studied about the effects of water on the combustion concepts and the characteristics of exhaust emissions in detail until now. In this study, the formation of NOx was significantly suppressed by decreasing the gas peak temperature during the initial combustion process because the water play a role as a heat sink during evaporating in the combustion chamber, but the smoke was slightly increased by increasing water amount.

Effect of Nitrogen and Carbon Dioxide on DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축착화 엔진에서 질소와 이산화탄소의 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.171-178
    • /
    • 2008
  • The combustion and exhaust emission characteristics were investigated in an DME fueled HCCI engine. Carbon dioxide, nitrogen and mixed gas, which was composed of carbon dioxide and nitrogen, were used as control parameters of combustion and exhaust emission. As the oxygen concentration in induction air, which was occurred by carbon dioxide, nitrogen and mixed gas, was reduced, the start of auto-ignition was retarded and the burn duration was extended due to obstruction of combustion and reduction of combustion temperature. Due to these fact, indicated mean effective pressure was increased and indicated combustion efficiency was decreased by carbon dioxide, nitrogen and mixed gas. In case of exhaust emission, hydrocarbon and carbon monoxide was increased by reduction of oxygen concentration in induction air. Especially, partial burning was appeared at lower than about 18% of oxygen concentration by supplying carbon dioxide. However it was overcome by intake air heating.

Characteristics of Indoor Air Quality and Local Supply Index with a Variation of Supply ${\cdot}$ Exhaust Airflow rate (환기량 변화에 따른 실내공기질과 국소급기지수 특성)

  • Han, Chang-Woo;Noh, Kwang-Chul;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.21-26
    • /
    • 2005
  • We performed the numerical analysis on the characteristics of indoor air quality and local supply index with a variation of supply · exhaust airflow rate. We analyzed the local supply index and carbon dioxide concentration at the room and breathing zone with respect to the variation of the supply · exhaust airflow rate. From the numerical results, we found that local supply index was affected but carbon dioxide concentration was hardly affected by the variation of the airflow rate in the room. And we also knew that carbon dioxide concentration was raised in despite of the increment of the supply airflow rate in the breathing zone. After this study it is necessary to analyze the local exhaust index when we evaluate the state of the ventilation in the room.

  • PDF