• Title/Summary/Keyword: Exhaust Temperature

Search Result 1,097, Processing Time 0.025 seconds

Thermal Fatigue Life Prediction of Engine Exhaust Manifold (엔진 배기매니폴드의 열피로 수명 예측)

  • Choi, Bok-Lok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.139-145
    • /
    • 2007
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermomechanical cyclic loadings. The analysis includes the FE model of the exhaust system, temperature dependent material properties, and thermal loadings. The result shows that at an elevated temperature, large compressive plastic deformations are generated, and at a cold condition, tensile stresses are remained in several critical zones of the exhaust manifold. From the repetitions of thermal shock cycles, plastic strain ranges could be estimated by the stabilized stress-strain hysteresis loops. The method was applied to assess the low cycle thermal fatigue for the engine exhaust manifold. It shows a good agreement between numerical and experimental results.

Analysis of the Influence of FOD by Aircraft Exhaust Wake (항공기 배기후류가 FOD 발생에 미치는 영향 분석)

  • Cho, Hwankee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • The exhaust wake of an aircraft engine is discharged in a high temperature and high speed, which can damage objects such as an aircraft in the rear. The exhaust wake can lift small foreign substances lying on the ground or falling off, and the floating foreign substances can enter the intake duct of the aircraft moving from the rear and cause engine FOD (Foreign Object Damage). This study experimentally analyzed how the engine exhaust wake generated from military jet fighters affects the movement of foreign substances and evaluated the effects of foreign substances on the damaged area by measuring wake velocity. The simulation and field experimental results confirmed that the effect of exhaust wake increases as the rear position closer, and that foreign substances lifted by the wake can act as FOD to the adjacent rear aircraft.

Effect of Alloying Element on the High Temperature Tensile Property of Ferritic Stainless Steel for Automotive Exhaust System (자동차용 페라이트계 스테인리스강의 고온인장성질에 미치는 합금원소의 영향)

  • Song, J.Y.;Lee, I.S.;Ahn, Y.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.59-64
    • /
    • 2010
  • Ferritic stainless steel is currently increasingly used for automotive exhaust material. The material for exhaust manifold is used in the temperature range of 500∼$850^{\circ}C$. Therefore, high temperature characteristic is an important one that affects it's life span. It has been investigated the effect of alloying elements of Cr, Mo, Nb, Ti in the ferritic stainless steel for exhaust manifold on the high temperature tensile strength. There was a few difference in the tensile strength at $600^{\circ}C$ with the exception of low Cr steel, but the steels containing higher Cr, Mo or Nb elements showed significantly higher tensile strength at the temperature of $800^{\circ}C$. The precipitates of the specimens after heat treating at the test temperature were electrolytic extracted, and quantitatively analysed using by SEM-EDS and TEM. The alloying elements of Cr and Mo increased the tensile strength as a solid solution strengthener, and on the other hand Nb element enhanced the strength by forming the fine intermetallic compounds such as NbC or $Fe_2Nb$.

A study on the application of recuperative burner system to a teeming ladle (티밍래들에 폐열회수버너의 적용)

  • 양제복;정대헌;김원배
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.10a
    • /
    • pp.180-192
    • /
    • 1998
  • One of the conventional gas burners has nowadays been used for ladle preheating. As a ladle is one of the open-type furnaces, however, it causes to consume much fuel because of high temperature of exhaust gas from the ladle and the exhaust gas passing through ladle cover makes it worsen a working environment nearby. Therefore, the objective of this study is to develop the recuperative burner system applying for an existing teeming ladle , which is integrated with burner, recuperator and eductor as one of the new type combustion equipments and has many advantages of simple installation, compactness and easy control, especially a great deal of energy saving through the waste heat recovery from exhaust gas. The contents of the study is to design, manufacture of recuperative burner system and to perform its tests experimentally after applying to the teeming ladle in the capacity of 100 ton. Its heat release rate is 1,700,000 kcal/h with COG(Cokes Oven Gas) as fuel gas. The test items are the temperature distribution inside the ladle and the preheated air temperature change depending upon the exhaust gas. Nox, exhaust gas analysis and noise.

  • PDF

High Temperature Salt Corrosion Property of Ferritic Stainless Steels (페라이트계 스테인리스강의 고온염 부식특성에 관한 연구)

  • Song, Jeon-Young;Park, Joong-Cheol;Ahn, Yong-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.860-866
    • /
    • 2009
  • It is very important to choose optimal material having good corrosion resistance and capabilities for the part materials such as the automotive exhaust system under a hot salt corrosion atmosphere. Generally, two types of corrosion come into the automotive exhaust system. One is 'Condensate Corrosion', which is occurred by exhaust gas condensate formed at the inner surface of exhaust system heated up during driving, which results in the acid condensate pitting. The other is 'High Temperature Salt Corrosion' occurring from the interaction between the chloride ion coming from salt at the seaside district or snow salt and the outer surface of exhaust system. By the corrosion attack, the main muffler is firstly damaged and the life cycle of an automobile is significantly decreased. It has been investigated that the hot salt corrosion properties of a STS 409L and 436L ferritic stainless steels which are well-known for the materials of the automotive exhaust system. In addition, the corrosion properties of hot dip aluminum coated STS 409L have been compared with uncoated steels. Aluminum coated STS 409L showed a superior corrosion resistance than uncoated STS 409L, and futhermore showed a better corrosion resistance than a STS 436L, which is an expensive ferritic stainless steel having a excellent corrosion resistance caused from more chromium content of an alloying element.

A Forging Analysis and Mechanical Properties Evaluation of Superalloy Exhaust Valve Spindle (초내열 합금 배기 밸브 스핀들 단조 해석 및 기계적 특성 평가)

  • Choi, S.G.;Oh, J.S.;Jeong, H.S.;Cho, J.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.84-88
    • /
    • 2009
  • The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. The exhaust valves of low speed diesel engines are usually operated at temperature levels of 400-$600^{\circ}C$ and high pressure to enhance thermal efficiency and exposed to the corrosion atmosphere by the exhaust gas. Also, the exhaust valve is subjected to repeated thermal and mechanical loads. So, the nickel-based alloy Nimonic 80A was used for the large exhaust valve spindle. It is composed a 540mm diameter head and a 125mm diameter stem. It is developed large products by hot closed-die forging. Manufacturing process analysis of the large exhaust valve spindle was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to $1080^{\circ}C$ Numerical calculation was performed by DEFORM-2D, a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. Mechanical properties of the large exhaust valve spindle were evaluated by the variety of tests, including microstructure observation, tensile, as well as hardness and fatigue tests, were conducted to evaluate the mechanical properties for head part of exhaust valve spindle.

  • PDF

IDLE PERFORMANCE OF AN SI ENGINE WITH VARIATIONS IN ENGINE CONTROL PARAMETERS

  • Kim, D.S.;Cho, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.763-768
    • /
    • 2006
  • Emission reduction in the cold start period of SI engines is crucial to meet stringent emission regulations such as SULEV Emissoin reduction is the starting point of the study in the which the variable valve timing (VVT) technology may be one promising method to minimize cold start emissions while maintaining engine performance. This is because it is possible to change valve overlap and residual gas fraction during cold start and idle operations. Our previous study showed that spark timing is another important factor for reducing cold-start emissions since it affects warm-up time of close-coupled catalysts (CCC) by changing exhaust gas temperature. However, even though these factors may be favorable for reduction of emissions, they may deteriorate combustion stability in these operating conditions. This means that the two variables should be optimized for best exhaust emissions and engine stability. This study investigated the effects of valve and spark timings in idle performance such as combustion stability and exhaust emissions. Experiments showed that valve timings significantly affected engine stability and exhaust emissions, especially CO and $NO_x$, due to change in residual gas fraction within the combustion chamber. Spark timing also affects HC emissions and exhaust gas temperature. Yet it has no significant effects on combustion stability. A control strategy of proper valve timing and spark timing is suggested in order to achieve a reduction in exhaust emissions and a stable operation of the engine in a cold start and idle operation.

Regeneration of Burner Type Diesel Particulate Trap System Through Active Exhaust Gas Feeding (배기 가스 유량 제어를 이용한 버너방식 디젤 입자상물질 제거 장치의 재생)

  • 김재업;박동선;이만복;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • The key point that guarantees the durability of the ceramic monolith filter is to lower peak temperature and temperature gradient inside filter during regeneration. The control of the exhaust gas flow rate into the filter, by the bypass technique of the exhaust gas, enables the gas temperature in filter to be constant for regeneration. A couple of methods, which are the ON/OFF and PID control of the bypass valve, were used for feedback control of the gas temperature. These techniques showed that the ceramic filter was regenerated perfectly under the peak temperature and peak temperature gradient limitations for durability.

  • PDF

The Effects of the Combustion Characteristics on the Exhaust System Volume of the SI Engine in Idling (아이들링 시 배기시스템 용적이 SI 기관의 연소특성에 미치는 영향)

  • Noh, Hyung-Chul;Park, Kyoung-Suk;Son, Sung-Man
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.186-192
    • /
    • 2007
  • We research into the exhaust system volume what proving the optimum exhaust performance and combustion characteristics. Many automobile manufactures have developed complex exhaust system for environment regulation and noise reduction. This complex exhaust system provides acoustics silencing and low frequency noise for customers demand. Recently, automobile exhaust system have made the Dual muffler concerning to the noise and vibration reduction. Also it bring the engine performance down by decreasing the back pressure and temperature in the exhaust system. The experiments are carried out different volume of exhaust system. In order to establish the optimized conditions design factors which are taking exhaust system volume, it show how the exhaust performance influence on the engine performance in idling.

The Effect of Temperature and Flow Rate in Hot Exhaust Gas on the NOx Emission and Flame Structure of Diffusion Flame (고온 배기가스의 온도 및 유량이 확산화염의 구조 및 NOx 발생에 미치는 영향)

  • Sohn, H.S.;Jang, S.W.;Kim, H.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.139-146
    • /
    • 2001
  • The experimental study was carried out for the diffusion flame characteristics of second stage combustor with the variations of temperature and supplying rate of hot exhaust gas from first stage combustor. It also examined the flame structure and NOx formation of the second stage combustor in which the fuel(natural gas) is supplying into the mixture of oxygen hot exhaust gas from first stage combustor. The results show that the increasement of temperature and flow rate of exhaust gas lead to increase the NOx up to 30ppm with 19% $O_2$ condition

  • PDF