• Title/Summary/Keyword: Exhaust Temperature

Search Result 1,099, Processing Time 0.027 seconds

A Study of Catalyst Temperature Rise Effect by using UEGI(Unburned Exhaust Gas Ignition) Technology during Cold-Start (냉시동시 미연 배기가스 점화 기술을 이용한 촉매 온도 상승 효과에 관한 연구)

  • Kim, C.S.;Chun, J.Y.;Choi, J.W.;Kim, I.T.;Ohm, I.Y.;Cho, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.335-340
    • /
    • 2000
  • Most vehicle's exhaust emissions come from the cold transient period of the FTP-75 test. In this study, UEGI technology was developed to help close-coupled catalytic converter (CCC) reach light-off temperature within a few seconds after cold-start. In the UEGI system, unburned exhaust mixture is ignited by four glow plugs installed upstream of the catalyst. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches light-off temperature earlier. Under the conditions tested, the light-off time of the baseline case was 62 seconds and that of the UEGI case was 33 seconds.

  • PDF

A Numerical Study on Smoke Exhaust at a Underground Room Fire (지하실 화재에서 배기의 효과에 관한 수치연구)

  • Ko, Kyung-Chan;Park, Woe-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.9-13
    • /
    • 2005
  • A underground room fire was simulated to investigate the effects of smoke exhaust on temperature visibility, soot etc. in the room. A room of $6m{\times}6m{\times}2.5m$ with a door of $0.9{\times}2.0m$ and a 0.5MW polystyrene fire in the room were considered. Temperature, visibility, CO volume fraction and soot were compared for the exhaust velocity at a vent located at the ceiling, 0, 1.2, and 2.4m/s, respectively. Results showed that increasing exhaust velocity decreased room temperature, CO and soot and increased visibility.

Funnel Design Guidance (Funnel 설계 권고안)

  • Jeong, Wang-Jo;Cho, Won-Ho;Kang, Dae-Youl;Kim, Seung-Hyuk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.59-64
    • /
    • 2006
  • Most important factor to consider funnel performance is exhaust gas temperature and exhaust gas concentration Electric equipments on the wheelhouse top affected exhaust gas temperature. So, it is important that electric equipments keep away from high temperature. Though exhaust gas concentration is not a regulation and restraint, the exhaust 9as can cause serious problems for the on-board air quality and result in irreversible damage to the ship and people. So, we pocus on the exhaust gas concentration also. When judge whether a measured concentration is acceptable or not, criteria based on the LTEL (Long Term Exposure Limit). In this paper, we carried out the smoke simulation study. For this analysis, we used FLUENT which is commercial CFD (Computational Fluid Dynamics) code.

  • PDF

Thermal Deformation Analysis of Exhaust Manifold for Turbo Diesel Engine in Consideration of Flange Design (터보 디젤 엔진용 배기매니폴드의 열변형 해석)

  • Kim, Beom-Keun;Lee, Eun-Hyun;Choi, Bok-Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.338-343
    • /
    • 2007
  • Thermal deformation of cast iron exhaust manifold for turbo diesel engine is investigated by finite element analysis (FEA). The FE model included the temperature dependent material properties as well as the interactions between exhaust manifold, cylinder head and fasteners. It also considers the sliding behavior of the flanges of exhaust manifold on cylinder head when either expansion or contraction of the exhaust manifold exceeds the fastener pretension. The result of analysis revealed that remarkable thermal deformation along the longitudinal direction. Compressive plastic deformation at high temperature remained tensile stress in manifold and resulted in longitudinal contraction at ambient temperature. The amount of contraction at each fastener position was predicted and compared with experimental results. Analysis results revealed that the model predicted deformation qualitatively, but more elaborated cyclic hardening behavior would be necessary to predict the deformation quantitatively.

A Study on Efficient Methods of Using Land Engine in the Small Fishing Vessel (소형 어선에서 육상용기관의 효율적인 이용방법에 대한 연구)

  • Lim, J.K.;Cho, S.G.;Hwang, S.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2005
  • A study on the performance and exhaust emissions of diesel engine with reducing exhaust gas temperature is performed experimentally. In this paper, experiments are performed at engine speed 2200rpm, 2600rpm and load 0%, 25%, 50%, 75% and 100% by test engine with F.W. cooler passing through exhaust gas. Main measured & analyzed parameters are exhaust gas temperature, specific fuel consumption, NOx and soot emissions etc. The obtained conclusions are as follows. (1) Specific fuel consumption is the least value at load 75% and it is decreased 1.5% after remodeling F.W. cooler. (2) NOx emission is the most value at load 100% and it is increased 30.1% after remodeling F.W. cooler. (3) Soot emission is the most value at load 100% and it is decreased 20.0% after remodeling F.W. cooler.

  • PDF

The Effect of T90 Temperature on Exhaust Emissions in Low-temperature Diesel Combustion (저온 디젤 연소에서 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.72-77
    • /
    • 2011
  • This study is to investigate the effect of the distillation temperature in ultra low sulfur diesel fuel on exhaust emissions in the low-temperature diesel combustion with 1.9L common rail direct injection diesel engine. Low temperature diesel combustion was achieved by adopting an external high EGR rate with a strategic injection control. The engine was operated at 1500 rpm 2.6 bar BMEP. The 90% distillation recovery temperature (T90) was $270^{\circ}C$ and $340^{\circ}C$ for the respective cetane number (CN) 30 and 55. It was found that there exists no distinctive discrepancy on exhaust emissions with regards to the different T90s. The high CN (CN55) fuels follow the similar trend of exhaust emissions as observed in CN30 fuels' except that high T90 fuel (CN55-T340) produced higher PM compared to low T90 fuel (CN55-T270). This may come from that high T90 plays an active role in aggravating the degree of fuel-air mixture preparedness before ignition.

A Study on Effect of Environmental Characteristics by Intake Mixture Temperature in Scrubber EGR System Diesel Engines

  • Bae, Myung-Whan;Ryu, Chang-Sung
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.100-111
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle, four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $NO_x$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to survey the effect of intake mixture temperature on performance and exhaust emissions, the intake mixtures of fresh air and recirculated exhaust gas are heated by a heating device with five heating coils made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that $NO_x$ emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature. Thus one can conclude that the performance and exhaust emissions are considerably influenced by the cooled EGR.

  • PDF

Flow and Heat Transfer Analysis for the Ventilating System in Automobile Interior with a Forced Exhaust (강제배기를 수반한 자동차 실내의 환기시스템에 대한 유동 및 열전달 해석)

  • Lee Sang-Ho;Moh Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.469-476
    • /
    • 2005
  • Numerical modeling has been carried out to investigate the two-dimensional air flow in automobile interior with a forced exhaust close to main air inlet for typical ventilation modes. The characteristics such as streamlines and temperature fields in the passenger compartment room with the forced exhaust are analyzed with comparison of the cases without a forced exhaust. The simulation results show that air flow on the floor near the front seat is increased with the forced exhaust for all ventilation modes. Flow recirculation in the cabin is most active in mode 2 with a vertical suction inlet in comparison with other two modes. In particular, less time is taken for air temperature to reach the inlet temperature due to the forced exhaust for the ventilation modes. Finally, it could be predicted that ventilating air flow is much improved with the forced exhaust in the interior Modeling results in this study can be applied to the optimal design of automobile interior fur air ventilation system.

Analysis of dew point and corrosion resistance for power plant economizer tube with exhaust gas temperature and sulfuric acid concentration (발전소 절탄기 튜브의 배기가스 온도와 황산 농도에 따른 노점 및 내식성 분석)

  • Choi, Jae-Hoon;Lee, Seung-Jun
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.433-440
    • /
    • 2022
  • Environmental pollution caused by power plant exhaust gas is highlighted and eco-friendly regulations are being strengthened. However, due to the abundant reserves and low prices of coal, still the most used for power generation in the world. Therefore, flexible operation of coal-fired power plants to reduce emissions has become an inevitable option. However, lowering the output increases the possibility of acid dew point corrosion as the exhaust gas temperature decreases. The dew point corrosion occurs when condensable gases such as SO3, HCl, NO2 and H2O cools below the saturation temperature. SO3 is already well known to cause severe low- temperature corrosion in coal-fired power plants. Therefore, this study aims to prevent damage that may occur during operation by analyzing the dew point and corrosion resistance with exhaust gas temperature and sulfuric acid concentration of the power plant economizer tube.

A Study on the Occurrence Character of Contaminant in the Kitchen that Use Gas Fuel (가스를 연료로 사용한 주방에서의 오염물질 발생 특성에 대한 연구)

  • 박명길;함진식
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2001.11a
    • /
    • pp.77-82
    • /
    • 2001
  • This paper is contents that measure the ventilation rates and temperature by driving condition of exhaust fan, vapor, contaminant occurrence amount of carbon dioxide etc. In kitchen of apartment house. The ventilation rates in the apartment kitchen measured by Tracer Gas Method. And, temperature of when cook by gas table hood lower part 10cm and floor upside 10cm of kitchen central part, 120cm, 210cm heights measure. As ventilation rates measurement result, ventilation number of times was 0.7(number of times/hour) when did not to operate exhaust fan. but we were measured by 2.3(number of times/hour) when drove strongly. As temperature measurement result at cooking by gas table, temperature showed highest in hood lower part 10cm of case that do not operate exhaust fan. Temperature at kitchen central was most low in 10cm height in talc floor, and 210cm were measured highest. Concentration of carbon dioxide is very high by 4,350ppm after measurement time 10 minutes in state who do not operate exhaust fan at cooking by gas table.

  • PDF