• 제목/요약/키워드: Exhaust Pressure

검색결과 872건 처리시간 0.025초

배기관 내 압력 변동 분석에 의한 가솔린 기관의 실화 검출 (Misfire Detection of a Gasoline Engine by Analysis of the Variation of Pressure in the Exhaust Manifold)

  • 심국상;복중혁;김세웅
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.1-8
    • /
    • 1999
  • This paper describes the method for detection of the misfired cylinder by analysis of the variation of pressure occurred in exhaust manifold on an MPI gasoline engine. Misfired cylinder(s) cause a loss of power, an increase of fuel consumption and exhaust emission and vibration is caused by unsteady torque. Therefore early detection and correction of misfired cylinder(s) play a very important role in the proper performance and the exhaust emission. The method is a comparison of integration pressure index during the period of a blowdown in the displacement period. Experimental results showed that the method, using the variation of pressure in the exhaust manifold is proven to be effective in the detection of single cylinder or multiple cylinders misfire on the gasoline engine regardless of the engine revolutions. In addition, this method, using the variation of pressure in the exhaust manifold is a very easy and accurate method compared with other methods.

  • PDF

자동차 배기계의 배기압 감응형 제어 머플러 개발에 관한 연구 (II) - 배기압 감응형 제어 머플러의 소음특성과 스프링 상수 - 최초 열림 압력의 관계 - (The Development of Muffler with Controller Sensing Exhaust-gas Pressure in Automotive Exhaust System (II))

  • 이해철;이민호;이준서;차경옥
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.167-176
    • /
    • 2003
  • This study is focused on the development of a new muffler. A control valve installed in the exhaust system is operated by torsion springs, and its open angle is controlled automatically corresponding to the engine operating conditions. A control valve and a control muffler sensing exhaust-gas pressure are made f3r developing a new muffler. The experiments were done using an exhaust system simulator having the same pulsation wave frequency and similar pulsation propagation characteristics of a real exhaust system. The purpose of this study is to develope a new muffler system which has improved noise reduction quality and less power loss than conventional mufflers and electronic-control mufflers. Finally the characteristic of noise compared with conventional muffler and muffler sensing exhuast-gas pressure.

배기구성요소가 SI기관의 성능에 미치는 영향 (The Effect of Exhaust System Components on the Sl Engine Performance)

  • 박경석;박세종;손성만
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.192-198
    • /
    • 2005
  • Recently, Automobile manufacturers regarding stability, economic environmental-friendly problems by the development of automobile. This reason is increasingly strict environmental regulations to lower fuel consumption and reduce emission. Designing more efficient and low emission control exhaust system results in more efficient Performance, reduced back Pressure and higher convert efficiency. Also to reduce the noise and the vibration of the automobile. According to develop variable type muffler, dual muffler and active intelligence exhaust system unit. Improvement in engine performance and fuel consumption rate, higher conversion efficiency demand information of pressure fraction and heat characteristics. To be able to determine these factor fur we experiment on each case of exhaust system unit. In this study, how back pressure is distributed in flow-through in exhaust system and how to design exhaust system flexibleness, efficiency, lower back pressure and optimal performance. This study furnish basic data for engineers, technicians.

점화기관 배기계의 압력과 전파특성에 관한 연구 (A Study on the Characteristics of Pressure Wave Propagation in Spark Ignition Engine Exhaust System)

  • 박진용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.72-78
    • /
    • 1996
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated gyulsating gas flow due the working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function. back pressure, and gradient of temperature in exhaust system.

  • PDF

기관 배기형의 머플러에서 압력맥동에 기대된 방사음에 관한 실험적 연구 (An Experimental Study on the Radiated Noise induced by Pressure Pulsation through Muffler in Engine Exhaust System)

  • 조경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권5호
    • /
    • pp.635-642
    • /
    • 1998
  • In automobile exhaust system. Internal pressure pulsation and shell vibration greatly affect the surface sound radiation. This noise is emitted from the muffler outer shell due to the pulsation of the exhaust gas pressure. This paper describes an analytical study of these characteristics as influenced by exhaust system structure. An exhaust simulator was used for generating the pressure pulsation. The relationship between shell vibration and radiated noise was used for generating the pressure pulsation. The relationship between shell vibration and radiated noise was identified by finding FRF.

  • PDF

배기 과급 디젤기관의 흡배기 유동특성에 관한 실험적 연구 (An experimental study on the flow characteristics of intake and exhaust in turbocharged diesel engine)

  • 배원섭
    • 오토저널
    • /
    • 제13권6호
    • /
    • pp.48-56
    • /
    • 1991
  • This paper describes the experimental investigations on the pressure variations of intake and exhaust manifold and mass flow rate through exhaust turbine of turbocharged 6-cylinder diesel engine. The turbocharger of experimental diesel engine is constructed with the radial ty pe exhaust turbine and blower driven by exhaust gases. The pressure variations were measur ed by pressure transducer at the points such as turbine inlet and outlet, compressor inlet and outlet, and inlet pipe and exhaust manifolds for normal and combined charging engines with the change of engine speed. The experimental results of this study show that the mass flow rate of exhaust turbine and the variations of pressure in intake and exhaust manifold are all increased with the increase of engine speed.

  • PDF

13" 비대칭 DPF 내 형상에 따른 배압 및 유동균일도 영향에 관한 전산해석연구 (CFD Analysis on Effect of Pressure Drop and Flow Uniformity with Geometry in 13" Asymmetric DPF)

  • 한단비;변현승;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.614-621
    • /
    • 2020
  • Recently, as the fine dust is increased and the emission regulations of diesel engines are strengthened, interest in diesel soot filtration devices is rapidly increased. In particular, there is a demand for technology development for higher efficiency of diesel exhaust gas after-treatment devices. As part of this, many studies conducted to increase the exhaust gas treatment efficiency by improving the flow uniformity of the exhaust gas in the DPF and reducing the pressure drop between the inlet and outlet of disel particle filter (DPF). In this study, computational fluid dynamics (CFD) simulation was performed when exhaust gas flows into the canning reduction device equipped with a 13" asymmetric DPF in order to maintain the flow uniformity in the diesel exhaust system and reduce the pressure. In particular, a study was conducted to find the geometry with the smallest pressure drop and the highest flow uniformity by simulating the DPF I/O ratio, exhaust gas temperature, inlet-outlet pressure and flow uniformity according to the geometry and hole size of distributor.

자동차 배기성능개선을 위한 확장형 공동파이프에 관한 연구 (A Study on the Expansion Cavity Pipe for Performance Improvement of Exhaust System in Automotive)

  • 손성만;박경석
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.1-6
    • /
    • 2009
  • The temperature of exhaust gas was raised by increasing of engine movement on developing engine. Thermal of high temperature and pressure reverse in bellows, because of increasing of engine movement and the thermal performance of converter in combustion. As a result, thermal loss is increased and thermal efficiency is decreased rapidly in bellows, it can occur to damage in mechanical structure. In this study, it was necessary to analyze back pressure performance and thermal characteristic on driving condition in exhaust system. It was adapted braid type bellows and straight type exhaust pipe. It was compared with curve type exhaust pipe for lay-out on considering to design of exhaust system. It was necessary to improve thermal characteristic and back pressure performance so that expansion cavity pipe(ECP) was installed between bellows and catalyst convert. Not only decreasing back pressure was solved but also thermal characteristic problems in exhaust pipe because of increasing capacity. According to this study, the basis of data is presented when new exhaust system is designed.

단기통 가솔린 기관의 배기단의 압력 예측 (Pressure Predictions in Exhaust Pipe of a Single Cylinder Gasoline Engine)

  • 최석천;이해종;김세현;고대권;정효민;정한식
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.24-29
    • /
    • 2004
  • In this study, a computer analysis has been developed for predicting the pipe pressure of the intake and exhaust manifold. To obtain the boundary conditions for a numerical analysis, one dimensional and non-steady gas dynamic calculation is performed by using the MOC(Method Of Characteristic). The main numerical parameters are the variation of the engine revolution to calculate the pulsating flow which the intake and exhaust valves arc working. The comparison of exhaust pressure in case of numerical results is quite matched with in case of experimental results. When engine revaluation is increased, the pressure amplitude showed a high value, but the pressure frequency was decreased.

  • PDF

배기시스템 구성요소가 SI기관의 연소특성에 미치는 영향 (The effect of exhaust system components on combustion characteristics of SI engine)

  • 박경석;박세종;최석렬;손성만
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.138-143
    • /
    • 2005
  • Recently, automobile manufacturers regarding stability, economic environmental-friendly problems by the development of automobile, environmental problem as designing the exhaust system. Increasingly strict environmental regulations to lower fuel consumption and reduce emission. Also to reduce the noise and the vibration of the automobile. According to develop variable type muffler, dual muffler and active intelligence exhaust system unit. Improvement in engine performance and fuel consumption rate demand information of pressure fraction and heat characteristics. To be able to determine these factor for we experiment on each case of exhaust system unit. In this study, how back pressure is distributed in flow-through in exhaust system and how to design exhaust system flexibleness, efficiency and combustion charateristics influenced by back pressure. This study furnish basic data for engineers, technicians.