• Title/Summary/Keyword: Exhaust Efficiency

Search Result 835, Processing Time 0.024 seconds

An Experimental Study on the Performance and Characteristics of Emission for an S.I. Engine with Methanol-Reformulated Fuel (메탄올 개질 연료를 이용한 S.I. 엔진의 성능 및 배기 배출물 특성에 관한 연구)

  • Jang, Yeong-Jun;Choe, Seung-Hwan;Ha, Cheol-Ho;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1193-1200
    • /
    • 2001
  • There are many regulation test methods to be related with engine emissions such as CVS-75, D-13, ECE-15 modes and so on. Most of these modes are consisted of lots of transient conditions that have rapid acceleration, deceleration and cranking modes. In this experimental research, the engine characteristics of cranking, accelerating and power output in a S.I. engine were studied to compare with neat gasoline and alternative fuels of M30 (methanol 30%, aromatic series 32%, non-aromatic 38%) and M50 (methanol 50%, aromatic 30%, non-aromatic 20%) for performance and exhaust emissions. The results show that reformulated methanol fuels are better emissions reduction of 15.7% over than that of neat gasoline fuel especially in HC and CO emissions at cranking mode. And the accelerating performances coincide with the results of distillation curve. CO concentration for M50 fuel is varied in a just little for the condition of slow acceleration. At wide-open throttle condition, brake specific energy consumption of reformulated fuels is increased and thermal efficiency is some what lower than that of gasoline fuel.

Numerical Analysis for Cooling Condition of a Lamp House in the Exposure Device by Response Surface Methodology (반응표면분석법을 이용하여 노광기 램프하우스의 냉각조건 수치해석)

  • Kim, Youngshin;Jeon, Euysik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1265-1271
    • /
    • 2014
  • The lamp cooling system of the exposure has effect on the exposure efficiency and device lifetime. In this paper, we performed the numerical analysis about the thermal flow in the lamp housing of the exposure apparatus for the cooling air inflow rate. We set up the velocity of cooling air of side and bottom as the independent variables because cooling performance of the lamp housing is affected by the velocity of the cooling air side and bottom. The cooling state of lamp housing depend on three dependent variables; the temperature at top mirror and exhaust gas, ellipsoidal mirror. Response surface methodology was used in order to establish the efficient cooling analysis plan. The regression equation predicting the variables temperature of lamp housing according to the cooling air velocity were drawn. The velocity of cooling air to reach the optimum temperature of the lamp housing were derived.

Preparation of Platinum Amine Complex Solution from Pt Scrap and its Catalytic Activity of Soot Oxidation (백금 스크랩으로부터 아민산백금용액 제조 및 Soot Oxidation 특성)

  • Choi, Seung Hoon
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.93-99
    • /
    • 2018
  • Effective extraction of platinum group elements by dissolving waste platinum scrap from the display industry and solvent extraction, was studied. The extracted platinum solution was prepared as a precursor solution for diesel automotive exhaust gas purification catalyst and its catalytic activity was tested. The behavior of aqueous species of platinum was investigated through solution chemistry and based on the existence and behavior of these chemical species, the possibility of extraction and separation was established. By dissolving waste scrap by electrochemical method, the dissolution time of scrap was shortened and the extraction efficiency was increased. Through separation and removal of rhodium component, solvent extraction by TBP, and stripping by hydrochloric acid, Pt-Chloride-$H_2O$ solution was prepared. And then, an platinum amine complex solution through amination reaction with this solution as a raw material was prepared. The possibility of producing high-value platinum compounds from platinum group waste scrap was investigated by preparing platinum amine complex solution and then examining the catalytic activity with this amine precursor on the combustion reaction of carbon black.

Control Oriented Storage and Reduction Modeling of the Lean NOx Trap Catalyst (제어를 위한 Lean NOx Trap의 흡장 및 환원 모델링)

  • Lee, Byoungsoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • A control oriented model of the Lean $NO_x$ trap (LNT) was developed to determine the timing of $NO_x$ regeneration. The LNT model consists of $NO_x$ storage and reduction model. Once $NO_x$ is stored ($NO_x$ storage model), at the right timing $NO_x$ should be released and then reduced ($NO_x$ reduction model) with reductants on the catalyst active sites, called regeneration. The $NO_x$ storage model simulates the degree of stored $NO_x$ in the LNT. It is structured by an instantaneous $NO_x$ storage efficiency and the $NO_x$ storage capacity model. The $NO_x$ storge capacity model was modeled to have a Gaussian distribution with a function of exhaust gas temperature. $NO_x$ release and reduction reactions for the $NO_x$ reduction model were modeled as Arrhenius equations. The parameter identification was optimally performed by the data of the bench flow reactor test results at space velocity 50,000/hr, 80,000/hr, and temperature of $250-500^{\circ}C$. The LNT model state, storage fraction indicates the degree of stored $NO_x$ in the LNT and thus, the timing of the regeneration can be determined based on it. For practical purpose, this model will be verified more completely by engine test data which simulate the NEDC transient mode.

Study on the Application of the Electric Drive System of Fuel Pump for Diesel Engine of Commercial Vehicle using HILS (HILS기반 상용차 디젤엔진용 연료펌프의 전기구동 시스템 적용에 관한 연구)

  • Ko, Youngjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • Fuel injection pressure has steadily increased in diesel engines for the purpose of improving fuel efficiency and cleaning exhaust gas, but it has now reached a point, where the cost for higher pressure does not warrant additional gains. Common rail systems on modern diesel engines have fuel pumps that are mechanically driven by crankshaft. The pumps actually house two pumping module inside: a low pressure pump component and a high pressure pump component. Part of the fuel compressed by the low pressure component returns to the tank in the process of maintaining the pressure in the common rail. Since the returning fuel represents pumping loss, fuel economy improves if the returned fuel can be eliminated by using a properly controled electrical fuel pump. As the first step in developing an electrical fuel pump the fuel supply system on a 6 liter diesel engine was modeled with AMESim to analyze the workload and the fuel feed rate of the injection pump, and the results served as basis for selecting a suitable servo motor and a reducer to drive the pump. A motor controller was built using a DSP and a program which controls the common rail pressure using a proportional control method based on the target fuel pressure information from the engine ECU. A test rig to evaluate performance of the fuel pump is implemented and used to show that the newly developed electrically driven fuel pump can satisfy the fuel flow demand of the engine under various operating conditions when the rotational speed of the pump is adequately controlled.

A Study on Heat and Smoke Exhaust Characteristics from the Subway Fire for Different Ventilation Modes (지하철 화재시 제연모드에 따른 열 및 연기 배출 특성 연구)

  • Chang, Hee-Chul;Yoon, Kyung-Beom;Park, Won-Hee;Kim, Tae-Kuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.37-42
    • /
    • 2008
  • This study is focused on the numerical predictions for different smoke-control ventilation modes for the subway fire. Smoke-control ventilation mode in the domestic platform is that exhausting for the smoke detected zones while supplying air or stopping any ventilation for other zones in the platform. Three cases of smoke control ventilation modes are considered. First and second case are present running smoke control mode in Korea. The third is that smoke-control ventilation fans equipped in the platform are operated in first 4 minute(platform evacuation time, NFPA130) since then the fans equipped in the platform are stopped and the fans equipped in the tunnels are operated. Distributions of heat, carbon monoxide and visible range are compared at a height of 1.7m(passenger breath/sight height) above the platform. The numerical results show that air supply fan operation in the platform causes the smoke disturbance and a rapid spread of the smoke. The switch-operation with fans in both the platform and tunnel are better than operation with only platform fans in smoke rejection efficiency.

Analysis on the Performance and the Emission of the Integrated Gasification Combined Cycle Using Heavy Oil (중잔사유 가스화 복합발전 사이클의 성능 및 환경배출 해석)

  • Lee, Chan;Yun, Yong-Seong
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.188-194
    • /
    • 2001
  • The process simulations are made on the IGCC power plant using heavy residue oil from refinery process. In order to model combined power block of IGCC, the present study employs the gas turbine of MS7001FA model integrated with ASU (Air Separation Unit), and considers the air extraction from gas turbine and the combustor dilution by returned nitrogen from ASU. The exhaust gas energy of gas turbine is recovered through the bottoming cycle with triple pressure HRSG (Heat Recovery Steam Generator). Clean syngas fuel of the gas turbine is assumed to be produced through Shell gasification of Visbreaker residue oil and Sulfinol-SCOT-Claus gas cleanup processes. The process optimization results show that the best efficiency of IGCC plant is achieved at 20% air extraction condition in the case without nitrogen dilution of gas turbine combustor find at the 40% with nitrogen dilution. Nitrogen dilution of combustor has very favorable and remarkable effect in reducing NOx emission level, while shifting the operation point of gas turbine to near surge point.

  • PDF

Technical Review of the Proposed Engines for SUAV (스마트무인기 후보엔진 기술검토)

  • Jun Yong-Min;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.64-71
    • /
    • 2006
  • For SUAV is required to have the capacity of VTOL and fast forward flight, the SUAV development program has decided to adopt the tiltrotor mechanism which includes helicopter and turboprop mechanisms. From the engine point of view, the key engine parameters such as engine operating mechanism, engine control scheme, the dynamics characteristic of power train, engine intake/exhaust concept, and engine installation requirements should fulfill the requirements of the two different mechanisms, helicopter and turboprop. And for the maximum efficiency of the rotor, rotational speed for the two modes are 20% different, the power train shall find a way to make it so. Meeting these specific requirements for the tiltrotor mechanism, this research begins with a conventional OTS(off-the-shelf) turboshaft engine survey and minimizes engine modification to develop an economical propulsion system. The engine technical review has been performed on the basis of those requirements and capabilities.

An Experimental Study on the Effect of Swirler Mass Flowrate and Flare Exit Length on Flow Patterns inside a Model Combustor Chamber (스월러 플레어 출구길이가 모델 챔버내 유동에 미치는 영향에 대한 실험적 연구)

  • Ryu, Gyong Won;Jin, Yu In;Kim, Yeong Ryon;Kim, Hong Jip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.70-75
    • /
    • 2016
  • A swirler is a flame holding device generating recirculation regions in a gas turbine combustor, and the flow pattern due to a swirler has major effects on the flame distributions, combustion efficiency, and characteristics of exhaust gas. An experimental study for a counter-rotating swirler has been conducted to find out effects of the mass flow rate ratio of the inner/outer swirler flow area, the pressure difference between the swirler inlet and outlet, and the flare exit length ratio on the flow patterns in a model combustion chamber by using PIV(Particle Image Velocimetry) technique.

Environmental Improvement in a Welding Factory by the Jet Ventilation System (제트 환기 시스템 도입에 의한 플랜트 기자재 용접장의 환경 개선 효과 분석)

  • Lim, Jung-Ho;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.2
    • /
    • pp.66-72
    • /
    • 2008
  • In this inquiry, I would suggest jet ventilation system for effective elimination of welding flaw at machinery material welding shop on plant and evaluate the airstream on inner space and property of welding flaw's density through the examination. We can know outer atmosphere inflows at the speed of about 0.05m/s from western entrance in case of stopping the jet ventilation system, but airstream is accumulated on entire space. At height of worker's breathing surface(Ground Level = 1.5 m, below of GL) and welding work center, density of welding flaw on upper part(GL = 12m) is appeared 4 times higher than outer atmosphere at surplus range besides nearby of western entrance. At operation of jet ventilation system, since the smooth air current transfer at inner space and exhaust effect the wind speed is maintained at 0.932 m/s at the point of height of worker's breathing surface on inner space and it's concluded about the working conditions have been better than before operation of jet ventilation system because of that results show that inner space density of welding flaw at height of worker's breathing surface is 40.5%, and in the work shop, it is 20.3% at upper part.

  • PDF