• Title/Summary/Keyword: Exfoliated graphite nanoplatelets

Search Result 10, Processing Time 0.022 seconds

Effect of exfoliated graphite nanoplatelets on the fracture surface morphology and the electrical resistivity of phenylethynyl-terminated polyimide

  • Cho, Dong-Hwan;Fukushima, Hiroyuki;Drzal, Lawrence T.
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2012
  • In the present work, exfoliated graphite nanoplatelets (EGN) of 1 ${\mu}m$ in average particle size, which were prepared by heating at $900^{\circ}C$ and then subjected to ultrasonic, ball-milling, and vibratory ball-milling techniques, were uniformly incorporated into phenylethynyl-terminated polyimide (PETI-5) resin. The fracture surface morphology and the electrical resistivity of the EGN/PETI-5 composites were investigated. The results showed that the fracture surfaces and the electrical resistivity strongly depended on the EGN content. The fracture surfaces became more ductile and roughened with increasing EGN and the electrical resistivity was gradually decreased with increased EGN loading, indicating the percolation threshold at 5 wt% EGN.

Preparation and Characterization of Reduced Graphene Nanosheets via Pre-exfoliation of Graphite Flakes

  • Meng, Long-Yue;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.209-214
    • /
    • 2012
  • In this work, the reduced graphene nanosheets were synthesized from pre-exfoliated graphite flakes. The pristine graphite flakes were firstly pre-exfoliated to graphite nanoplatelets in the presence of acetic acid. The obtained graphite nanoplatelets were treated by Hummer's method to produce graphite oxide sheets and were finally exfoliated to graphene nanosheets by ultrasonication and reduction processes. The prepared graphene nanosheets were studied by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). From the results, it was found that the preexfoliation process showed significant influence on preparation of graphite oxide sheets and graphene nanosheets. The prepared graphene nanosheets were applied to the preparation of conductive materials, which yielded a greatly improved electrical resistance of $200{\Omega}/sq$.

Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview

  • Cho, Donghwan;Drzal, Lawrence T.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.1-11
    • /
    • 2016
  • In efforts to characterize and understand the properties and processing of phenylethynyl-terminated imide (LaRC PETI-5, simply referred to as PETI-5) oligomers and polymers as a high-temperature sizing material for carbon fiber-reinforced polymer matrix composites, PETI-5 imidization and thermal curing behaviors have been extensively investigated based on the phenylethynyl end-group reaction. These studies are reviewed here. In addition, the use of PETI-5 to enhance interfacial adhesion between carbon fibers and a bismaleimide (BMI) matrix, as well as the dynamic mechanical properties of carbon/BMI composites, are discussed. Reports on the thermal expansion behavior of intercalated graphite flake, and the effects of exfoliated graphite nanoplatelets (xGnP) on the properties of PETI-5 matrix composites are also reviewed. The dynamic mechanical and thermal properties and the electrical resistivity of xGnP/PETI-5 composites are characterized. The effect of liquid rubber amine-terminated poly(butadiene-co-acrylonitrile) (ATBN)-coated xGnP particles incorporated into epoxy resin on the toughness of xGnP/epoxy composites is examined in terms of its impact on Izod strength. This paper provides an extensive overview from fundamental studies on PETI-5 and xGnP, as well as applied studies on relevant composite materials.

Influence of Processing on Morphology, Electrical Conductivity and Flexural Properties of Exfoliated Graphite Nanoplatelets-Polyamide Nanocomposites

  • Liu, Wanjun;Do, In-Hwan;Fukushima, Hiroyuki;Drzal, Lawrence T.
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.279-284
    • /
    • 2010
  • Graphene is one of the most promising materials for many applications. It can be used in a variety of applications not only as a reinforcement material for polymer to obtain a combination of desirable mechanical, electrical, thermal, and barrier properties in the resulting nanocomposite but also as a component in energy storage, fuel cells, solar cells, sensors, and batteries. Recent research at Michigan State University has shown that it is possible to exfoliate natural graphite into graphite nanoplatelets composed entirely of stacks of graphene. The size of the platelets can be controlled from less than 10 nm in thickness and diameters of any size from sub-micron to 15 microns or greater. In this study we have investigated the influence of melt compounding processing on the physical properties of a polyamide 6 (PA6) nanocomposite reinforced with exfoliated graphite nanoplatelets (xGnP). The morphology, electrical conductivity, and mechanical properties of xGnP-PA6 nanocomposite were characterized with electrical microscopy, X-ray diffraction, AC impedance, and mechanical properties. It was found that counter rotation (CNR) twins crew processed xGnP/PA6 nanocomposite had similar mechanical properties with co-rotation (CoR) twin screw processed or with CoR conducted with a screw design modified for nanoparticles (MCoR). Microscopy showed that the CNR processed nanocomposite had better xGnP dispersion than the (CoR) twin screw processed and modified screw (MCoR) processed ones. It was also found that the CNR processed nanocomposite at a given xGnP content showed the lowest graphite X-ray diffraction peak at $26.5^{\circ}$ indicating better xGnP dispersion in the nanocomposite. In addition, it was also found that the electrical conductivity of the CNR processed 12 wt.% xGnP-PA6 nanocomposite is more than ten times higher than the CoR and MCoR processed ones. These results indicate that better dispersion of an xGnP-PA6 nanocomposite is attainable in CNR twins crew processing than conventional CoR processing.

Evaluation of Fire Characteristics for Particle-board with Exfoliated Graphite Nanoplatelets Added (탄소재료의 적용 방법에 따른 파티클 보드의 연소 특성)

  • Seo, Hyun Jeong;Jo, Jeong Min;Hwang, Wuk;Lee, Min Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • This study was conducted to evaluate the fire retardant performance of exfoliated graphite nanoplatelets (xGnP) applied for particleboard. This work measured heat release rate(HRR), total heat release(THR) and smoke production rate(SPR) of xGnP added particleboard, using cone calorimeter to assess its fire characteristics according to the KS F ISO 5660-1 standard code. Heat release rates of all specimens treated by xGnP were less than the $200kW/m^2$ for a total experiment period of five minutes. Heat release rates of the specimens coated with xGnP were lower than those of the specimens made by mixing wood particles with xGnP directly. Meanwhile, the total heat release rates of xGnP coated specimen maintained quite lower level than the uncoated so the xGnP coating were effective in improving the fire retardant performance of particleboard. However, the smoke emission peaking problem at the initial combustion period, which was caused by adding base coating materials, should be resolved for further satisfaction as a fire retardant materials.

Effect of Interphase Modulus and Nanofiller Agglomeration on the Tensile Modulus of Graphite Nanoplatelets and Carbon Nanotube Reinforced Polypropylene Nanocomposites

  • Karevan, Mehdi;Pucha, Raghuram V.;Bhuiyan, Md.A.;Kalaitzidou, Kyriaki
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.325-331
    • /
    • 2010
  • This study investigates the effect of filler content (wt%), presence of interphase and agglomerates on the effective Young's modulus of polypropylene (PP) based nanocomposites reinforced with exfoliated graphite nanoplatelets ($xGnP^{TM}$) and carbon nanotubes (CNTs). The Young's modulus of the composites is determined using tensile testing based on ASTM D638. The reinforcement/polymer interphase is characterized in terms of width and mechanical properties using atomic force microscopy which is also used to investigate the presence and size of agglomerates. It is found that the interphase has an average width of ~30 nm and modulus in the range of 5 to 12 GPa. The Halpin-Tsai micromechanical model is modified to account for the effect of interphase and filler agglomerates and the model predictions for the effective modulus of the composites are compared to the experimental data. The presented results highlight the need of considering various experimentally observed filler characteristics such as agglomerate size and aspect ratio and presence and properties of interphase in the micromechanical models in order to develop better design tools to fabricate multifunctional polymer nanocomposites with engineered properties.

Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers

  • Park, Jong Kyoo;Lee, Jae Yeol;Drzal, Lawrence T.;Cho, Donghwan
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • In the present study, exfoliated graphite nanoplatelets (xGnP) with different particle sizes were coated onto polyacrylonitrile-based carbon fibers by a direct coating method. The flexural properties, interlaminar shear strength, and the morphology of the xGnP-coated carbon fiber/phenolic matrix composites were investigated in terms of their longitudinal flexural strength and modulus, interlaminar shear strength, and by optical and scanning electron microscopic observations. The results were compared with a phenolic matrix composite counterpart prepared without xGnP. The flexural properties and interlaminar shear strength of the xGnP-coated carbon fiber/phenolic matrix composites were found to be higher than those of the uncoated composite. The flexural and interlaminar shear strengths were affected by the particle size of the xGnP, while the particle size had no significant effect on the flexural modulus. It seems that the interfacial contacts between the xGnP-coated carbon fibers and the phenolic matrix play a role in enhancing the flexural strength as well as the interlaminar shear strength of the composites.

Flexural, electrical, thermal and electromagnetic interference shielding properties of xGnP and carbon nanotube filled epoxy hybrid nanocomposites

  • Lee, Young Sil;Park, Yeon Ho;Yoon, Kwan Han
    • Carbon letters
    • /
    • v.24
    • /
    • pp.41-46
    • /
    • 2017
  • The microstructure, flexural properties, electrical conductivity, thermal conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of epoxy composites filled with multi-walled carbon nanotubes (CNTs), exfoliated graphite nanoplatelets (xGnPs) and CNT-xGnP hybrid filler were investigated. The EMI SE of the CNT-xGnP hybrid composite was higher than 25 dB at 100 MHz while that of the xGnP based composite was almost zero. The flexural modulus of the CNT-xGnP based epoxy composite continuously increased to 3.32 GPa with combined filler content up to 10 wt% while that of the CNT based epoxy composites slightly decreased to 1.96 GPa at 4 wt% CNT, and dropped to 1.57 GPa at 5 wt% loading, which is lower than that of epoxy. The CNT and CNT-xGnP samples had the same EMI SE at the same surface resistivity, because samples with the same surface conductivity have the same amount of the charge carriers.

Preparation and Thermal-property Analysis of Heat Storage Concrete with SSPCM for Energy Saving in Buildings (축열 성능 향상 SSPCM 혼합 콘크리트 제조 및 열적특성 분석)

  • Jeong, Su-Gwang;Chang, Seong Jin;Lim, Jae-Han;Kim, Hee-Sun;Ryu, Seong-Ryong;Kim, Sumin
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.89-96
    • /
    • 2015
  • n-octadecnae based shape stabilized phase change material (SSPCM) was prepared by using vacuum impregnation method. And an exfoliated graphite nanoplate (xGnP) which has high thermal conductivity properties is used as a PCM container. And then we made heat storage concretes which contains SSPCM for reducing heating and cooling load in buildings. In the prepararion process, the SSPCM was mixed to a concrete as 10, 20 and 30wt% of cement weight. The thermal properties and chemical properties of heat storage concrete were analyzed from Scanning electron microscope (SEM), Fourier transformation infrared spectrophotometer (FT-IR), Deferential scanning calorimeter (DSC), Thermogravimetric analysis (TGA) and TCi thermal conductivity analyzer. And we conducted surface temperature analysis of SSPCM and xGnP by using heat plate and insulation mold.

A Study on Processing-Structure-Property Relationships of Extruded Carbon Nanomaterial-Polypropylene Composite Films (탄소나노튜브 및 그래핀 나노플레이트 폴리프로필렌 복합재 필름 압출 및 물성 평가)

  • Kim, Byeong-Joo;Deka, Biplab K.;Kang, Gu-Hyuk;Hwang, Sang-Ha;Park, Young-Bin;Jeong, In-Chan;Choi, Dong-Hyuk;Son, Dong-Il
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.254-258
    • /
    • 2013
  • Polypropylene films reinforced with multi-walled carbon nanotubes and exfoliated graphite nanoplatelets were fabricated by extrusion, and the effects of filler type and take-up speed on the mechanical properties and microstructure of composite films were investigated. Differential scanning calorimetry revealed that the addition of carbon nanomaterials resulted in increased degree of crystallinity. However, increasing the take-up speed reduced the degree of crystallinity, which indicates that tension-induced orientations of polymer chains and carbon nanomaterials and the loss of degree of crystallinity due to rapid cooling at high take-up speeds act as competing mechanisms. These observations were in good agreement with tensile properties, which are governed by the degree of crystallinity, where the C-grade exfoliated graphite nanoplatelet with a surface area of $750m^2/g$ showed the greatest reinforcing effect among all types of carbon nanomaterials used. Scanning electron microscopy was employed to observe the carbon nanomaterial dispersion and orientation, respectively.