• Title/Summary/Keyword: Exfoliated

Search Result 247, Processing Time 0.032 seconds

Structural Properties of Epoxy-Montmorillonite Nanocomposites (몬모릴로나이트와 에폭시수지로부터 합성된 나노복합재료의 구조적 특성에 관한 연구)

  • Sur, Gil-Soo;Ryu, Joung-Gul;Lyu, Sung-Gyu;Choi, Hyun-Kuk;Kim, Bong-Sik
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.615-619
    • /
    • 1999
  • Polyether-clay nanocomposite was not polymerized with stearyltrimethylammonium ion exchanged montmorillonite, but it was self-polymerizable when heated with both stearyltrimethylammpmoim and m-phenylenediammonium ions intercalated montmorillonite to form polyether-clay nanocomposites. Molcular disperion of montmorillonite within the crosslinked epoxy matrix verified using X-ray diffraction and transmission electron microscopy found that the final product contains a uniform dispersion of exfoliated $10{\AA}$ thin clay layers seperated by $250{\sim}500{\AA}$of polyether polymer, thus verifying the nanocomposite structure.

  • PDF

Preparation of Graphene Based PdOx and CuOx/MnOx Nanocomposites and Their Catalytic Applications in C-C Coupling and CH3SH Decomposition Reactions

  • Lee, Gyeong-Hun;Park, Jun-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.175.2-175.2
    • /
    • 2014
  • Graphene (G) has been modified with palladium, copper, and manganese oxide nanoparticles (NPs), and their catalytic applications have been studied in C-C coupling reactions and methylmercaptan (CH3SH) decomposition reactions. In this research, graphite oxide (GO) sheets were exfoliated and oxidized from graphite powder and impregnated with metal precursors including Pd2+, Cu2+, and Mn2+. The thermal treatments of the metal impregnated GO in preferred gas environments produced Pd NPs on graphene (Pd/G), PdO NPs on GO (PdO/GO), and CuOx and MnOx NPs on graphene (CuOx/MnOx/G). In case of Pd/G and PdO/GO, the TEM images show that, although the mean size of the Pd NPs changed significantly before and after the C-C coupling reaction, that of the PdO NPs didn't, implying that the PdO/GO was superior to Pd/G in terms of the recyclability. Also, we demonstrate that the CuOx/MnOx/G exerts the excellent catalytic efficiency in CH3SH decomposition reaction comparing with conventional catalysts. The chemical and electronic structural changes were investigated using XRD and XPS.

  • PDF

Development of polypropylene-clay nanocomposite with supercritical $CO_2$ assisted twin screw extrusion

  • Hwang, Tae-Yong;Lee, Sang-Myung;Ahn, Young-Joon;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.235-243
    • /
    • 2008
  • The aim of this study is to explore the possibility of incorporating supercritical carbon dioxide ($scCO_2$) into twin screw extrusion process for the production of polypropylene-clay nanocomposite (PPCN). The $CO_2$ is used as a reversible plasticizer which is expected to rapidly transport polymeric chains into the galleries of clay layers in its supercritical condition inside the extruder barrel and to expand the gallery spacings in its sub-critical state upon emerging from die. The structure and properties of the resulting PPCNs are characterized using wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), rheometry, thermogravimetry and mechanical testing. In the processing of the PPCNs with $scCO_2$, optimum $scCO_2$ concentration and screw speed which maximized the degree of intercalation of clay layers were observed. The WAXD result reveals that the PP/PP-g-MA/clay system treated with $scCO_2$ has more exfoliated structure than that without $scCO_2$ treatment, which is supported by TEM result. $scCO_2$ processing enhanced the thermal stability of PPCN hybrids. From the measurement of linear viscoelastic property, a solid-like behavior at low frequency was observed for the PPCNs with high concentration of PP-g-MA. The use of $scCO_2$ generally increased Young's modulus and tensile strength of PPCN hybrids.

Poly(lactic acid)/Wood Flour/Montmorillonite Nanocomposites (I) : Tensile and Morphological Properties

  • Kim, Jin-Sung;Lee, Sun-Young;Doh, Geum-Hyun;Kang, In-Aeh;Yoon, Ho-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.426-433
    • /
    • 2009
  • This study investigates the tensile and morphological properties of nanocomposites prepared from poly(lactic acid) (PLA), wood flour (WF) and montmorillonite (MMT) by melt compounding with a twin screw extruder. In order to enhance the mechanical properties of PLA/WF composites, maleic anhydride grafted PLA (MAPLA) is synthesized as a compatibilizer. MAPLA prepared in the laboratory is characterized using FT-IR (Fourier transformed infrared spectroscopy). From the results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis for nanocomposites, we confirmed that silicate layers of MMT are intercalated and partially exfoliated. When 2 wt% MAPLA is added, the tensile strength and modulus of PLA/WF/MAPLA composites were higher than those of the PLA/WF composite. The addition of MMT increases the tensile modulus of PLA/WF/MAPLA composites but decreases the tensile strength.

A Study on Blasting for Paint Exfoliation on Plastic Coated Faces Using the Environment-Friendly Abrasive Materials of Starch Series (친환경 전분계 연마재를 이용한 플라스틱 도장면의 페인트 박리를 위한 블라스팅 가공에 관한 연구)

  • Li, Li-Hai;Kim, Yeon-Sul;Lee, Hi-Koan;Yang, Gyun-Eui;Mun, Sang-Don
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.79-86
    • /
    • 2010
  • The environment-friendly abrasive materials of starch series has a wide range of application value such as deburring of plastic injection products, paint exfoliation and surface treatment of painted products and polishing, etc. In this study, an experiment of paint exfoliation was performed by using the environment-friendly abrasive materials made of cheap starch, and its performance was reviewed. By adjusting the grit size of abrasive materials, nozzle pressure, nozzle feed and number of nozzle repetition, paint could be exfoliated effectively. In this experiment, it was found that the most suitable condition was grit size 0.75~1.0 mm, nozzle pressure 0.4 MPa, nozzle feed 5 mm/min and number of processing repetition 2 times.

Reduced Graphene Oxide Field-Effect Transistor for Temperature and Infrared Sensing

  • Trung, Tran Quang;Tien, Nguyen Thanh;Kim, Do-Il;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.552-552
    • /
    • 2012
  • We fabricated reduced graphene oxide field-effect transistor (RGO-FET) on glass for highly sensitive temperature and IR detection. The device has the channels of RGO responsive to physical stimuli such as temperature and IR. The RGO sensing layers are fabricated from exfoliated graphene oxide sheets that are deposited to form a thin continuous network by electrostatic assembly. These graphene oxide networks are reduced toward reduce graphene oxide by exposure to a hydrazine hydrate vapor. To improve performance and eliminate interferences from oxygen and water vapor absorption to electrical properties of RGO-FET, the sensor devices were encapsulated by the tetratetracontane layer after annealing treatment. The device with encapsulation layer showed lower hysteresis, improved stability, and better repeatability. The temperature response of RGO-FET is examined by measuring changing the temperature, the device exhibited the high sensitivity and repeatability even with the temperature interval of 1 K. We also demonstrated that our devices have capability of IR sensing.

  • PDF

Synthesis of Few-layer Graphene Film on a Ni Substrate by Using Filtered Vacuum Arc Source Method

  • Kim, Chang-Su;Seo, Ji-Hun;Gang, Jae-Uk;Kim, Do-Geun;Kim, Jong-Guk;Lee, Hyeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.157-157
    • /
    • 2011
  • Graphene has generated significant interest in the recent years as a functional material for electronics, sensing, and energy applications due to its unique electrical, optical, and mechanical properties. Much of the considerable interest in graphene stems from results obtained for samples mechanically exfoliated from graphite. Practical applications, however, require reliable and well-controlled methods for fabrication of large area graphene films. Recently high quality graphene layers were fabricated using chemical vapor deposition (CVD) on nickel and copper with methane as the source of the carbon atoms. Here, we report a simple and efficient method to synthesize graphene layers using solid carbon source. Few-layer graphene films are grown using filtered vacuum arc source (FVAS) technique by evaporation of carbon atom on Ni catalytic metal and subsequent annealing of the samples at 800$^{\circ}$C. In our system, carbon atoms diffuse into the Ni metal layer at elevated temperatures followed by their segregation as graphene on the free surface during the cooling down step as the solubility of carbon in the metal decrease. For a given annealing condition and cooling rate, the number of graphene layers is easily controlled by changing the thickness of the initially evaporated amorphous carbon film. Based on the Raman analysis, the quality of graphene is comparable to other synthesis methods found in the literature, such as CVD and chemical methods.

  • PDF

Raman Spectroscopy Studies of Graphene Nanoribbons and Chemical Doping in Graphene

  • Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.15-15
    • /
    • 2011
  • Atom-thick graphene membrane and nano-sized graphene objects (NGOs) hold substantial potential for applications in future molecular-scale integrated electronics, transparent conducting membranes, nanocomposites, etc. To realize this potential, chemical properties of graphene need to be understood and diagnostic methods for various NGOs are also required. To meet these needs, chemical properties of graphene and optical diagnostics of graphene nanoribbons (GNRs) have been explored by Raman spectroscopy, AFM and STM scanning probes. The first part of the talk will illustrate the role of underlying silicon dioxide substrates and ambient gases in the ubiquitous hole doping of graphene. An STM study reveals that thermal annealing generates out-of-plane deformation of nanometer-scale wavelength and distortion in $sp^2$ bonding on an atomic scale. Graphene deformed by annealing is found to be chemically active enough to bind molecular oxygen, which leads to a strong hole-doping. The talk will also introduce Raman spectroscopy studies of GNRs which are known to have nonzero electronic bandgap due to confinement effect. GNRs of width ranging from 15 nm to 100 nm have been prepared by e-beam lithographic patterning of mechanically exfoliated graphene followed by oxygen plasma etching. Raman spectra of narrow GNRs can be characterized by upshifted G band and strong disorder-related D band originating from scattering at ribbon edges. Detailed analysis of the G, D, and 2D bands of GNRs proves that Raman spectroscopy is still a reliable tool in characterizing GNRs despite their nanometer width.

  • PDF

High-Quality Graphene Films Synthesized by Inductively-Coupled Plasma-Enhanced Chemical Vapor Deposition

  • Lam, Van Nang;Park, Nam-Kuy;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.90.2-90.2
    • /
    • 2012
  • Graphene has recently attracted significant attention because of its unique optical and electrical properties. For practical device applications, special attention has to be paid to the synthesis of high-quality graphene on large-area substrates. Graphene has been synthesized by eloborated mechanical exfoliation of highly oriented pyrolytic graphite, chemical reduction of exfoliated grahene oxide, thermal decomposition of silicon carbide, and chemical vapor deposition (CVD) on Ni or Cu substrates. Among these techniques, CVD is superior to the others from the perspective of technological applications because of its possibility to produce a large size graphene. PECVD has been demonstrated to be successful in synthesizing various carbon nanostructures, such as carbon nanotubes and nanosheets. Compared with thermal CVD, PECVD possesses a unique advantage of additional high-density reactive gas atoms and radicals, facilitating low-temperature, rapid, and controllable synthesis. In the current study, we report results in synthesizing of high-quality graphene films on a Ni films at low temperature. Controllable synthesis of quality graphene on Cu foil through inductively-coupled plasma CVD (ICPCVD), in which the surface chemistry is significantly different from that of conventional thermal CVD, was also discussed.

  • PDF

Effect of Interphase Modulus and Nanofiller Agglomeration on the Tensile Modulus of Graphite Nanoplatelets and Carbon Nanotube Reinforced Polypropylene Nanocomposites

  • Karevan, Mehdi;Pucha, Raghuram V.;Bhuiyan, Md.A.;Kalaitzidou, Kyriaki
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.325-331
    • /
    • 2010
  • This study investigates the effect of filler content (wt%), presence of interphase and agglomerates on the effective Young's modulus of polypropylene (PP) based nanocomposites reinforced with exfoliated graphite nanoplatelets ($xGnP^{TM}$) and carbon nanotubes (CNTs). The Young's modulus of the composites is determined using tensile testing based on ASTM D638. The reinforcement/polymer interphase is characterized in terms of width and mechanical properties using atomic force microscopy which is also used to investigate the presence and size of agglomerates. It is found that the interphase has an average width of ~30 nm and modulus in the range of 5 to 12 GPa. The Halpin-Tsai micromechanical model is modified to account for the effect of interphase and filler agglomerates and the model predictions for the effective modulus of the composites are compared to the experimental data. The presented results highlight the need of considering various experimentally observed filler characteristics such as agglomerate size and aspect ratio and presence and properties of interphase in the micromechanical models in order to develop better design tools to fabricate multifunctional polymer nanocomposites with engineered properties.