• Title/Summary/Keyword: Exergy Destruction

Search Result 29, Processing Time 0.026 seconds

Exergy-Based Performance Analysis of Heavy-duty Gas Turbine in Part-Load Operating Conditions (엑서지를 이용한 대형 발전용 가스터빈의 부분부하 성능 분석)

  • Song, T.W.;Sohn, J.L.;Kim, J.H.;Kim, T.S.;Ro, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.751-758
    • /
    • 2001
  • Exergy concept is applied to the analysis of part-load performance of gas turbine engine. Exergy is a useful tool to find the source of irreversibility in thermal system. In this study, details of the performance characteristics of a heavy-duty gas turbine, l50MW-class GE 7FA model, are described by theoretical investigations with exergy analysis. Result shows that exergy destruction rate of gas turbine increases with decreased load, which means increase of irreversibility. Also, it is found that variations of IGV angle and amount of cooling air for turbine blades are closely related to the inefficiencies of compressor and turbine, respectively.

  • PDF

Comparison of Exergy in a Refrigerating System using R404A and R134a for a Refrigeration Truck with Operating Conditions (운전조건에 따른 R404A와 R134a를 적용한 냉동탑차용 냉장시스템의 엑서지 비교)

  • Shin, Yunchan;Kim, Taejung;Cho, Honghyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.11
    • /
    • pp.497-503
    • /
    • 2014
  • The performances of refrigeration truck systems using R404A and R134a were investigated by experimental testing, and compared. The optimal COPs of the R404A and R134a systems were 2.96 and 3.42, when the refrigerant charge amount was 1.3 kg and 1.4 kg, respectively. When the indoor side air temperature increased from $5^{\circ}C$ to $9^{\circ}C$, the total exergy destruction rate of the R404A system was on average 39.1% higher than that of the R134a system. In addition, the exergy efficiency of the R404A system was 12.9% higher than that of R134a system, for various indoor air temperatures. When the outdoor side air temperature increased from $25^{\circ}C$ to $35^{\circ}C$, the total exergy destruction rate of the R404A and R134a systems decreased by 18.9% and 19.5%, respectively. In addition, the exergy efficiency of the R404A and R134a systems increased by 25.2% and 30.7%, respectively. As the compressor rotating speed increased, the COP of the R404A and R134a systems decreased by 23.6% and 18.4%. The total exergy destruction rate and exergy efficiency of the R404A system were 27.2% and 15.7% higher than those of R134a system, respectively. Compared to the R404A system, the R134a system showed a higher COP and a lower exergy destruction rate; thus it can be concluded that the R134a system has the better performance.

Entropy and exergy analysis and optimization of the VVER nuclear power plant with a capacity of 1000 MW using the firefly optimization algorithm

  • Talebi, Saeed;Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2928-2938
    • /
    • 2020
  • A light water nuclear Reactor has been exergy analyzed, and the rate of irreversible exergy loss and exergy destruction is calculated for each of its components. The ratio of these losses compared to the total input exergy loss is calculated, which shows that most irreversible losses occur in the reactors, turbines, steam generators, respectively, as well as in the downstream operations. The main aim of this paper is to optimize the power plant using an innovative firefly algorithm and then to propose a novel strategy to improve the overall performance of the plant. As shown in the results, the exergy destruction rate of the plant decreased by 1.18% using the firefly method, and the exergy efficiency of the plant reached 29.3% comparing to the operational amount of 28.99%. Also, the results of the firefly optimization process compared to the Genetic algorithm and gravitational search algorithm to study the accuracy of the model for exergy analysis fitness problems in the power plants and the results of this comparison has shown that the results are nearly similar in the mentioned methods. However, the firefly is faster and more accurate in limited iterations.

Exhaust-Gas Heat-Recovery System of Marine Diesel Engine (II) - Exergy Analysis for Working Fluids of R245fa and Water - (선박용 디젤엔진의 배기가스 열회수 시스템 (II) - R245fa 및 Water 의 작동유체에 대한 엑서지 분석 -)

  • Choi, Byung-Chul;Kim, Young-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.593-600
    • /
    • 2012
  • The exergy characteristics for R245fa and water working fluids have been analyzed for an electric generation system utilizing the Rankine cycle to recover heat from the wasted exhaust gas from a diesel engine used for the propulsion of a large ship. The theoretical calculation results showed that the efficiencies of exergy and system exergy improved as the turbine inlet pressure increased for R245fa at a fixed mass flow rate. Furthermore, the exergy destruction rates of the condenser and evaporator were relatively larger than those in other components. The exergy efficiency of the system increased with increasing mass flow rate. For a water working fluid, although the exergy destruction rate of the evaporator was similar to that for R245fa, the exergy loss rate varied significantly in response to variations in the pressure and mass flow rates at the turbine inlet.

Exergy Analysis of Gas Turbine System Depending on Steam Injection Method (증기 분사 방식에 따른 가스터빈 시스템의 엑서지 해석)

  • MIJIDDORJ, DASHTSEDEN;LIM, SOK KYU;JUNG, YOUNG GUAN;KIM, KYOUNG HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.570-576
    • /
    • 2017
  • Gas turbine system with steam injection has shown outstanding advantages such as high specific power and NOx reduction. In the present work, a comparative exergetic analysis was carried out for Steam Injected Gas Turbine (STIG), Regenerative Steam Injected Gas Turbine (RSTIG), and Regenerative After Fogging Gas Turbine (RAF). Effects of pressure ratio, steam injection ratio and steam injection method on the system performance was theoretically investigated. The results showed that the order of the highest exergy efficiency is RSTIG, RAF, and STIG for low pressure ratios but STIG, RSTIG, and RAF for high pressure ratios. In each arrangement, the combustion chamber has the highest exergy destruction and the compressor has the second one.

Experimental exergy assessment of ground source heat pump system

  • Ahmad, Saif Nawaz;Prakasha, Om
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.161-172
    • /
    • 2019
  • The principal intention of this experimental work is to confer upon the exergy study of GSHP associated with horizontal earth heat exchanger for space heating. The exergy analysis recognizes the assessment of the tendency of various energy flows and quantifies the extensive impression of inefficiencies in the system and its components. Consequently, this study intends to provide the enlightenment for well interpretation of exergy concept for GSHP. This GSHP system is composed of heat pump cycle, earth heat exchanger cycle and fan coil cycle. All the required data were measured and recorded when the experimental set up run at steady state and average of the measured data were used for exergy investigation purpose. In this study the rate at which exergy destructed at all the subsystems and system has been estimated using the analytical expression. The overall rational exergetic efficiency of the GSHP system was evaluated for estimating its effectiveness. Hence, we draw the exergy flow diagram by using the various calculated results. The result shows that in the whole system the maximum exergy destruction rate component was compressor and minimum exergy flow component was earth heat exchanger. Consequently, compressor and earth heat exchanger need to be pay more attention.

Exergy Analysis of On/Off Controlled Heat Pump

  • Jang, Ki-Tae;Nam, Kwan-Woo;Jeong, Sang-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.22-32
    • /
    • 1999
  • A multi-type heat pump controls the mass flow rate of the working fluid to cope with variable heat loads when it is under dynamic load condition. This paper describes the exergy analysis associated with the unsteady response of a heat pump. First, a basic heat pump cycle is examined at a steady state to show the general trends of exergy variations in each process of the cycle. Entropy generation issue for the heat exchangers is discussed to optimize the heat pump cycle. Secondly, the performance of the inverter-driven heat pump is compared to that of the conventional one when the heat load is variable. Thirdly, the exergy destruction rate of the heat pump with On/Off operation is calculated by simulating the thermodynamic states of the working fluid in the condenser and the evaporator. The inefficiency of On/Off operation during the transient period is quantitatively described by the exergy analysis.

  • PDF

Exergy analysis of heat pump in consideration of its dynamic response (동특성을 고려한 열펌프의 엑서지 해석)

  • 장기태;남관우;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.155-164
    • /
    • 1998
  • A multi-type heat pump controls the mass flow rate of the working fluid to cope with variable heat loads when it is under dynamic load condition. This paper describes the exergy analysis associated with the dynamic response of heat pump. First, a basic heat pump cycle is examined at steady state to show the general trends of exergy changes in each process of the cycle. Entropy generation issue in the exchangers is discussed to optimize the heat pump cycle. Second, the performance of the inverter-driven heat pump is compared to that of the conventional one when the heat load is variable. Third, the exergy destruction rate associated with the ON/OFF operations of the heat pump is calculated by simulating the thermodynamic states of the condenser and the evaporator. The inefficiency of the ON/OFF operation during the transient period is quantitatively revealed by the exergy analysis.

  • PDF

Exergy Analysis of Regenerative Gas Turbine Systems with Afterfogging (압축기 출구 물분사가 있는 재생 가스터빈 시스템의 엑서지 해석)

  • Kim, Kyoung-Hoon;Ko, Hyung-Jong;Kim, Se-Woong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.1
    • /
    • pp.31-39
    • /
    • 2010
  • An exergy analysis is carried out for the regenerative gas turbine cycle which has a potential of enhanced thermal efficiency and specific power owing to the more possible water injection than that of inlet fogging under the ambient conditions. Using the analysis model in the view of the second law of thermodynamics, the effects of pressure ratio, water injection ratio and ambient temperature are investigated on the performance of the system such as exergetic efficiency, heat recovery ratio of recuperator, exergy destruction or loss ratios, and on the optimal conditions for maximum exergy efficiency. The results of computation for the typical cases show that the regenerative gas turbine system with afterfogging can make a notable enhancement of exergy efficiency.

  • PDF

Exergy Analysis of Regenerative Wet-Compression Gas-Turbine Cycles (습식 압축을 채용한 재생 가스터빈 사이클의 엑서지 해석)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • An exergy analysis is carried out for the regenerative wet-compression Brayton cycle which has a potential of enhanced thermal efficiency owing to the reduced compression power consumption and the recuperation of exhaust energy. Using the analysis model, the effects of pressure ratio and water injection ratio are investigated on the exergy efficiency of system, exergy destruction ratio for each component of the system, and exergy loss ratio due to exhaust gas. The results of computation for the typical cases show that the regenerative wet-compression gas turbine cycle can make a notable enhancement of exergy efficiency. The injection of water results in a decrease of exergy loss of exhaust gas and an increase of net power output.