• 제목/요약/키워드: Exergy Analysis

검색결과 113건 처리시간 0.027초

Exergy Analysis of Solar Collector

  • 이석건;이현우
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.74-79
    • /
    • 1990
  • Important factors in evaluating solar collcetor efficiency are solar radiation, temperature and flow rate of the working fluid. The effects of these factors on the energy and the exergy gained by water, the working fluid, from the collector were analyzed. The results indicated that the collector efficiency and the energy and the exergy gained by the water from the collcetor increased with the increase of solar radiation. According to the exergy analysis, as the water temperature at the inlet of the collector increased, the exergy gained by the water increased while the energy gained by the water decreased. The water temperature at the outlet of the collector could be calculated with a mean error of 2.8%, and the energy and the exergy could be calculated theoretically with mean errors of 16.8% and 19.1%, respcetively.

  • PDF

초저온 질소생상공정의 Exergy 해석 및 평가 (Exergy Analysis and Evaluation of Cryogenic Nitrogen Production Process)

  • 용평순;뭉홍만;이성철
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.169-172
    • /
    • 1999
  • The exergy method is used for analysis and evaluation of the cryogenic nitrogen production process which is operated by expansion turbene and liquid nitrogen. The exergy loss and thermodynamic effeciency are calculated for the each process. Also the operating efficiency and the exergy distribution are examined for each unit of proces. The optimal conditions to minimize the exergy loss of nitrogen column are found that nitrogen recovery ratio is maximum and operating pressure is 5.0 kg/cm2g. The exergy method can be used to design a plant and to evaluate its process.

  • PDF

Exergy Analysis of On/Off Controlled Heat Pump

  • Jang, Ki-Tae;Nam, Kwan-Woo;Jeong, Sang-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제7권
    • /
    • pp.22-32
    • /
    • 1999
  • A multi-type heat pump controls the mass flow rate of the working fluid to cope with variable heat loads when it is under dynamic load condition. This paper describes the exergy analysis associated with the unsteady response of a heat pump. First, a basic heat pump cycle is examined at a steady state to show the general trends of exergy variations in each process of the cycle. Entropy generation issue for the heat exchangers is discussed to optimize the heat pump cycle. Secondly, the performance of the inverter-driven heat pump is compared to that of the conventional one when the heat load is variable. Thirdly, the exergy destruction rate of the heat pump with On/Off operation is calculated by simulating the thermodynamic states of the working fluid in the condenser and the evaporator. The inefficiency of On/Off operation during the transient period is quantitatively described by the exergy analysis.

  • PDF

동특성을 고려한 열펌프의 엑서지 해석 (Exergy analysis of heat pump in consideration of its dynamic response)

  • 장기태;남관우;정상권
    • 설비공학논문집
    • /
    • 제10권2호
    • /
    • pp.155-164
    • /
    • 1998
  • A multi-type heat pump controls the mass flow rate of the working fluid to cope with variable heat loads when it is under dynamic load condition. This paper describes the exergy analysis associated with the dynamic response of heat pump. First, a basic heat pump cycle is examined at steady state to show the general trends of exergy changes in each process of the cycle. Entropy generation issue in the exchangers is discussed to optimize the heat pump cycle. Second, the performance of the inverter-driven heat pump is compared to that of the conventional one when the heat load is variable. Third, the exergy destruction rate associated with the ON/OFF operations of the heat pump is calculated by simulating the thermodynamic states of the condenser and the evaporator. The inefficiency of the ON/OFF operation during the transient period is quantitatively revealed by the exergy analysis.

  • PDF

압축기 출구 물분사가 있는 재생 가스터빈 시스템의 엑서지 해석 (Exergy Analysis of Regenerative Gas Turbine Systems with Afterfogging)

  • 김경훈;고형종;김세웅
    • 한국산업융합학회 논문집
    • /
    • 제13권1호
    • /
    • pp.31-39
    • /
    • 2010
  • An exergy analysis is carried out for the regenerative gas turbine cycle which has a potential of enhanced thermal efficiency and specific power owing to the more possible water injection than that of inlet fogging under the ambient conditions. Using the analysis model in the view of the second law of thermodynamics, the effects of pressure ratio, water injection ratio and ambient temperature are investigated on the performance of the system such as exergetic efficiency, heat recovery ratio of recuperator, exergy destruction or loss ratios, and on the optimal conditions for maximum exergy efficiency. The results of computation for the typical cases show that the regenerative gas turbine system with afterfogging can make a notable enhancement of exergy efficiency.

  • PDF

자동차용 에어컨 성능실험과 액서지 해석 (Performance Experiment and Exergy Analysis of an Automotive Air-conditioning System)

  • 오상한;윤종갑;원성필
    • 설비공학논문집
    • /
    • 제12권4호
    • /
    • pp.363-370
    • /
    • 2000
  • Experiments have been peformed, using pure refrigerant R134a and a zeotropic refrigerant mixture R290/R600a(60%/40%) and their performances have been analyzed by the first and second laws(exergy method) of thermodynamics. From the experimental results, variations of compressor speed and air temperature have a great effect on the performance of the system. The sum of exergy losses in compressor and evaporator is about 60% of total exergy loss, using refrigerant R134a, so it is necessary to improve the performance of compressor and evaporator. According to the experimental results using refrigerant mixture of R290/R600a(60%/40%), the exergy losses in heat exchange processes are decreased but the exergy loss in throttling process is increased. The performance of the system has been improved by 20∼30% compared with that of R134a and exergy losses have been also reduced.

  • PDF

엑서지 해석에 근거한 분별증류 및 수소첨가알킬제거 공정의 에너지 이용 개선 방안 (Suggestions for Energy Utilization Improvement of Fractionation and Hydrodealkylation Units Based on Exergy Analysis)

  • 정연수
    • 청정기술
    • /
    • 제12권2호
    • /
    • pp.95-100
    • /
    • 2006
  • 엑서지 개념을 이용하여 BTX 공정의 일부인 분별증류 및 수소첨가알킬제거 공정에 대한 열역학적 해석을 실시하였다. 공정에 화학반응이 관계되는 까닭에 엑서지 값은 물리적 엑서지와 화학적 엑서지의 합으로서 구했으며 모든 계산은 공정의 조업자료를 바탕으로 한 전산 모사의 결과를 기반으로 하였다. 엑서지 손실을 구동 엑서지와 물질 엑서지 손실로 구분하여 정의하고 각각의 값을 구하였으며 그 결과를 바탕으로 공정의 에너지 이용 개선방안을 제시하였다. 엑서지 해석을 통해 공정의 내부에서 손실되는 엑서지 정확한 양과 그 위치를 파악할 수 있었으며 엑서지 해석이 산업생태학 개념의 이용과 손실방지책 연구를 위한 기초가 될 수 있음을 확인할 수 있었다.

  • PDF

증기터빈 열병합 시스템에 대한 에너지 및 엑서지 해석 (Energy and Exergy Analysis of a Steam Turbine Cogeneration System)

  • 조성철
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1397-1405
    • /
    • 2009
  • In recent decades, exergy analysis has been holding spotlight as a useful tool in the design, assessment, optimization, and improvement of energy system. This paper presents the results of the energy and exergy analysis of a steam turbine cogeneration system for industrial complex using two efficiency concepts of conventional one and exergetic one. In order to obtain the destroyed exergy of each component, mathematical analysis is conducted by using exergy balance and the second law of thermodynamics, according as the parameters are changed, such as the ratio of returned process steam, process steam supplied, temperature and pressure of boiler and power. The computer program developed in this study can determine the efficiencies and exergy destroyed at each component of cogeneration system. As a result of this study, a component having the largest destroyed exergy was boiler. And closed and opened feedwater heater had the lowest one. The affects to the cogeneration system due to the variation of process steam flow and return rate of condensed water is shown that the total electric power efficiency(${\eta}_E$) is decreased as increasing the return rate of condensed water under constant process steam flow. As the boiler pressure is increased for the more production of electricity, the efficiency of cogeneration system was decreased.

  • PDF

아스펜 플러스를 이용한 폭발성 가스 건식 연소 처리공정의 열회수 모델링 및 엑서지 분석 (Heat Recovery Modeling and Exergy Analysis of Dry Combustion Process for Explosive Gas Treatment Using Aspen Plus)

  • 최용만;최창식;홍범의;조성수;김용진;김학준
    • 한국대기환경학회지
    • /
    • 제33권5호
    • /
    • pp.521-528
    • /
    • 2017
  • In the combustion treatment of explosive gases with a high heating value such as $H_2$ and $NH_3$ used in semiconductor and chemical processes, the heat recovery modeling and exergy analysis of the process using the Aspen Plus simulator and its thermodynamic data were performed to examine the recovery of high temperature thermal energy. The heat recovery process was analyzed through this process modeling while the exergy results clearly confirmed that the rigorous reaction mainly occurs in the condenser and the chamber. In addition, the process modeling demonstrated that approximately 95% of the exergy is destructed on the basis of the exergies injected and the exergy being exhausted. Using the exergy technique, which can quantitatively analyze the energy, we could understand the energy flow in the process and confirm that our heat recovery process was efficiently designed.

Energy and Exergy Aanalyses of Drying of Eggplant Slices in a Cyclone Type Dryer

  • Akpinar E. Kavak
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.692-703
    • /
    • 2005
  • In this paper, the energy and exergy analyses of the drying process of thin layer of eggplant slices are investigated. Drying experiments were conducted at inlet temperatures of drying air of 55, 65 and $75^{\circ}C$ and at drying air velocities of 1 and $1.5\;ms^{-1}$ in a cyclone type dryer. Using the first law of thermodynamics, energy analysis was carried to estimate the ratios of energy utilization. However, exergy analysis was accomplished to determine type and magnitude of exergy losses during the drying process by applying the second law of thermodynamics. It was deduced that eggplant slices are sufficiently dried in the ranges between $55-75^{\circ}C$ of drying air temperature and at 1 and $1.5\;ms^{-1}$ of drying air velocity during 12000-21600 s despite the exergy losses of $0-0.739\;kJs^{-l}.