• Title/Summary/Keyword: Execution Time

Search Result 1,939, Processing Time 0.025 seconds

Determination of Optimal Checkpoint Interval for Real-time Control Tasks Considering Performance Index Function (성능 함수를 고려한 실시간 제어 테스크에서의 최적 체크 포인터 구간 선정)

  • Kwak, Seong-Woo;Jung, Young-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.875-880
    • /
    • 2008
  • In this paper, a novel method to determine the optimal checkpoint interval for real-time control task is proposed considering its performance degradation according to tasks's execution time. The control task in this paper has a specific sampling period shorter than its deadline. Control performance is degraded as the control task execution time is prolonged across the sampling period and eventually zero when reached to the deadline. A new performance index is defined to represent the performance variation due to the extension of task execution time accompanying rollback fault recovery. The procedure to find the optimal checkpoint interval is addressed and several simulation examples are presented.

Optimizing Checkpoint Intervals for Real-Time Multi-Tasks with Arbitrary Periods (임의 주기를 가지는 실시간 멀티 태스크를 위한 체크포인트 구간 최적화)

  • Kwak, Seong-Woo;Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.193-200
    • /
    • 2011
  • This paper presents an optimal checkpoint strategy for fault-tolerance in real-time systems. In our environment, multiple real-time tasks with arbitrary periods are scheduled in the system by Rate Monotonic (RM) algorithm, and checkpoints are inserted at a constant interval in each task while the width of interval is different with respect to the task. We propose a method to determine the optimal checkpoint interval for each task so that the probability of completing all the tasks is maximized. Whenever a fault occurs to a checkpoint interval of a task, the execution time of the task would be prolonged by rollback and re-execution of checkpoints. Our scheme includes the schedulability test to examine whether a task can be completed with an extended execution time. A numerical experiment is conducted to demonstrate the applicability of the proposed scheme.

Improving Memory Efficiency of Dynamic Memory Allocators for Real-Time Embedded Systems

  • Lee, Jung-Hee;Yi, Joon-Hwan
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.230-239
    • /
    • 2011
  • Dynamic memory allocators for real-time embedded systems need to fulfill three fundamental requirements: bounded worst-case execution time, fast average execution time, and minimal fragmentation. Since embedded systems generally run continuously during their whole lifetime, fragmentation is one of the most important factors in designing the memory allocator. This paper focuses on minimizing fragmentation while other requirements are still satisfied. To minimize fragmentation, a part of a memory region is segregated by the proposed budgeting method that exploits the memory profile of the given application. The budgeting method can be applied for any existing memory allocators. Experimental results show that the memory efficiency of allocators can be improved by up to 18.85% by using the budgeting method. Its worst-case execution time is analyzed to be bounded.

Performance Improvement of Application Programs using an Adaptive Sampling Method (가변 샘플링 기법을 이용한 프로그램 성능 개선)

  • Jo, Jeongho;Suh, Hyo-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.149-154
    • /
    • 2017
  • Performance of the mobile devices, such as Smartphones, is sensible by the early-stage of the execution of the applications. To addressing this issue, the dynamic frequency scaling by the ondemand governor has an inherent weakness by the sampling period that may induces some delay in the execution time of the applications. In this paper, we propose an adaptive sampling method that varying the sampling period of the ondemand governor in accordance with the execution of the applications. By the experiment result, the proposed method outperforms 3.34% in early-stage of the execution time that impacts the sensible performance, and exhibits negligible differences in terms of the energy consumption.

An Adaptively Speculative Execution Strategy Based on Real-Time Resource Awareness in a Multi-Job Heterogeneous Environment

  • Liu, Qi;Cai, Weidong;Liu, Qiang;Shen, Jian;Fu, Zhangjie;Liu, Xiaodong;Linge, Nigel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.670-686
    • /
    • 2017
  • MapReduce (MRV1), a popular programming model, proposed by Google, has been well used to process large datasets in Hadoop, an open source cloud platform. Its new version MapReduce 2.0 (MRV2) developed along with the emerging of Yarn has achieved obvious improvement over MRV1. However, MRV2 suffers from long finishing time on certain types of jobs. Speculative Execution (SE) has been presented as an approach to the problem above by backing up those delayed jobs from low-performance machines to higher ones. In this paper, an adaptive SE strategy (ASE) is presented in Hadoop-2.6.0. Experiment results have depicted that the ASE duplicates tasks according to real-time resources usage among work nodes in a cloud. In addition, the performance of MRV2 is largely improved using the ASE strategy on job execution time and resource consumption, whether in a multi-job environment.

Optimizing Instruction Prefetching to Improve Worst-Case Performance for Real-Time Applications

  • Ding, Yiqiang;Yan, Jun;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.1
    • /
    • pp.59-71
    • /
    • 2009
  • While the average-case performance is important for general-purpose applications, worst-case performance is crucial for real-time systems to ensure schedulability and reliability. Recent work has shown that simple prefetching techniques such as the Next-N-Line prefetching can benefit both average-case and worst-case performance; however, the improvement on the worstcase execution time (WCET) is rather limited and inefficient. This paper presents two instruction prefetching approaches that are specially designed to enhance the worst-case performance, including the loop-based prefetching and WCET-oriented prefetching. Our experiments indicate that both instruction prefetching techniques can achieve better worst-case execution cycles than the Next-N-Line prefetching while having various impacts on the average-case performance.

Study on Comparison of an I/O Program Execution Time to Intel Series μPs : 8085, 8086, 8051 and 80386 (마이크로프로세서 I/O 프로그램 실행시간 비교 연구 : 8085, 8086, 8051 및 80386)

  • Lee, Young-Wook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.59-65
    • /
    • 2013
  • Microprocessors of 8 to 16 bits have become the first step of today's computer development with excellent capability and a lot of those are still used in the educational spots. In this study, execution times of Intel series microprocessors(${\mu}ps$) available to microprocessor systems of 8 to 32 bits are obtained and compared by I/O programs. The compared result showed that execution time related to the instruction cycles of 8 bit 8051 was longer than that of 8 bit 8051 and of 16 bit 8086 by a lot of number of clocks in cases of clock frequencies at 4 MHz and at 12 MHz. In cases of really many using ${\mu}p$ clock frequencies, it showed that execution times of instructions have become faster by the order of 8085, 8086, 8051 and 80386. It can be helped to interface with ${\mu}ps$ for real time control through comparing with execution times of I/O programs by mainly many usable Intel series ${\mu}ps$ in our nation.

ANC Caching Technique for Replacement of Execution Code on Active Network Environment (액티브 네트워크 환경에서 실행 코드 교체를 위한 ANC 캐싱 기법)

  • Jang Chang-bok;Lee Moo-Hun;Cho Sung-Hoon;Choi Eui-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9B
    • /
    • pp.610-618
    • /
    • 2005
  • As developed Internet and Computer Capability, Many Users take the many information through the network. So requirement of User that use to network was rapidly increased and become various. But it spend much time to accept user requirement on current network, so studied such as Active network for solved it. This Active node on Active network have the capability that stored and processed execution code aside from capability of forwarding packet on current network. So required execution code for executed packet arrived in active node, if execution code should not be in active node, have to take by request previous Action node and Code Server to it. But if this execution code take from previous active node and Code Server, bring to time delay by transport execution code and increased traffic of network and execution time. So, As used execution code stored in cache on active node, it need to increase execution time and decreased number of request. So, our paper suggest ANC caching technique that able to decrease number of execution code request and time of execution code by efficiently store execution code to active node. ANC caching technique may decrease the network traffic and execution time of code, to decrease request of execution code from previous active node.

Dynamic Load Balancing Algorithm using Execution Time Prediction on Cluster Systems

  • Yoon, Wan-Oh;Jung, Jin-Ha;Park, Sang-Bang
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.176-179
    • /
    • 2002
  • In recent years, an increasing amount of computer network research has focused on the problem of cluster system in order to achieve higher performance and lower cost. The load unbalance is the major defect that reduces performance of a cluster system that uses parallel program in a form of SPMD (Single Program Multiple Data). Also, the load unbalance is a problem of MPP (Massive Parallel Processors), and distributed system. The cluster system is a loosely-coupled distributed system, therefore, it has higher communication overhead than MPP. Dynamic load balancing can solve the load unbalance problem of cluster system and reduce its communication cost. The cluster systems considered in this paper consist of P heterogeneous nodes connected by a switch-based network. The master node can predict the average execution time of tasks for each slave node based on the information from the corresponding slave node. Then, the master node redistributes remaining tasks to each node considering the predicted execution time and the communication overhead for task migration. The proposed dynamic load balancing uses execution time prediction to optimize the task redistribution. The various performance factors such as node number, task number, and communication cost are considered to improve the performance of cluster system. From the simulation results, we verified the effectiveness of the proposed dynamic load balancing algorithm.

  • PDF

Learning Framework for Robust Planning and Real-Time Execution Control

  • Wang, Gi-Nam;Yu, Gang
    • Management Science and Financial Engineering
    • /
    • v.8 no.1
    • /
    • pp.53-75
    • /
    • 2002
  • In this Paper, an attempt is made to establish a learning framework for robust planning and real-time execution control. Necessary definitions and concepts are clearly presented to describe real-time operational control in response to Plan disruptions. A general mathematical framework for disruption recovery is also laid out. Global disruption model is decomposed into suitable number of local disruption models. Execution Pattern is designed to capture local disruptions using decomposed-reverse neural mappings, and to further demonstrate how the decomposed-reverse mappings could be applied for solving disrubtion recovery problems. Two decomposed-reverse neural mappings, N-K-M and M-K-N are employed to produce transportation solutions in react-time. A potential extension is also discussed using the proposed mapping principle and other hybrid heuristics. Experimental results are provided to verify the proposed approach.