• 제목/요약/키워드: Excxavator

검색결과 3건 처리시간 0.018초

IMV를 사용한 유압굴삭기 붐 동작의 에너지 절감 (Energy Saving in Boom Motion of Excavators using IMV)

  • 허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권3호
    • /
    • pp.1-7
    • /
    • 2017
  • Energy consumption of conventional hydraulic excavators controlled by MCV is considerable when negative load is applied because the meter orifice and meter-out orifice are machined in one spool. Therefore, IMV is introduced to save energy use of hydraulic excavators, but existing hydraulic excavators have various advantages so it is difficult to make a clear comparison. In this study, we compare the use of an existing MCV excavator that has many advantages such as negative control, and IMV for boom up and down operation, and if IMV is used to save energy, we will examine the cause. If possible, for comparability under the same conditions, both systems use pressure balance valves to minimize power consumption when not using power in the actuator. The orifice area at each notch of each valve is calculated, and energy saving is verified by comparing the two systems through simulation.

양방향 3단 IMV 개발을 위한 시뮬레이션 해석 (Simulation Analysis for the Development of 3 Stage IMV)

  • 허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권2호
    • /
    • pp.55-62
    • /
    • 2020
  • There are two types of IMV for MCV, the spool type and the poppet type. The spool type is used in the existing excavator MCV and easily meets large-capacity flow conditions, but has a flow force problem which affects the spool control. The poppet type stably blocks the flow and has excellent rapid response. However, the larger the capacity, the larger the diameter of the poppet needed, requiring a strong spring to withstand the oil pressure. In this study, a bi-directional three-stage IMV for MCV that can be used in medium and large hydraulic excavators was proposed. This is a poppet type, enabling bi-directional flow control and resolves the problem of proportional solenoid suction force limitation. To investigate the validity of the proposed valve, the system was mathematically modeled and the static and dynamic characteristics were investigated through the simulation using commercial software. It has been concluded that the reverse flow is possible in a regeneration circuit and that the proposed IMV can be used to perform various excavation modes.

MCV용 IMV개발을 위한 기초설계 (Basic Design for Development of IMV for MCV)

  • 허준영;정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권3호
    • /
    • pp.49-56
    • /
    • 2018
  • Construction machinery is used to improve productivity in civil engineering work and construction work, and it is a lengthy operation, and consumes considerable fuel to cope with large loads. As a result, productivity and fuel consumption of the construction machine become the main deciding factors. In the hydraulic system of the excavator, the main control valve is the most critical position for control. The flow distribution for control performance is achieved by the metering orifice, that causes critical energy loss. To improve this, we propose a combination of a three port proportional pressure reducing valve and a poppet type flow control valve as an IMV to replace the existing spool type MCV. To validate the proposal, we analyze static characteristics by modeling mathematically, and analyze dynamic characteristics. Simulation using the AMESim software on the regeneration circuit of the boom cylinder up-down operation, verifies the energy-saving effect compared to the existing MCV when IMV is used.