• 제목/요약/키워드: Exciter system

Search Result 127, Processing Time 0.032 seconds

A Study on Modeling of Pumped Storage Power Plant (양수발전소의 모델링에 관한 연구)

  • Han, Yoon-Gyo;Lee, Seung-Yoon;Park, Chul-Won
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.77-78
    • /
    • 2015
  • For the smooth operation and efficient management of pumped storage power plants, we should be understand a generator, turbine, exciter, governor, and stabilizer and prepare an abnormal accident through an accident simulation by software such as PSCAD, PSS/E. This paper investigates configuration of the generator system of ${\bigcirc}{\bigcirc}$ pumped storage power plant. And describes the modeling and fault simulation studies using PSCAD.

  • PDF

Analysis of the Factors Affecting Low-Frequency Oscillations in KEPCO Power System` With Pumped-Storage Plant (한전 전력계통의 저주파 진동현상 요인분석;양수발전기 기동시)

  • Kil Yeong Song;Sae Hyuk Kwon;Kyu Min Ro;Seok Ha Song
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.841-849
    • /
    • 1992
  • In power system operation, the stability of synchronous machine has been recognized one of the most important things. AESOPS program developed by EPRI in U.S.A. is a frequency domain analysis program in power system stability and it computes the electro-mechanical oscillation mode. This paper presents how to analyze the power system small signal stability problem efficiently by uusing the AESOPS program and analyze the various factors affecting the damping characteristics of these oscillations in KEPCO power system of 1986 with pumped-storage plant. To reduce the computing time and efforts, selecting the poorly-damped oscillation mode and clustering technique have been used. The characteristics of load, the amount of power flow on the transmission line and the gain of exciter have a significant effects on the damping of the system while the governing system has only a minor one. With the Power System Stabilizers, the stability of the power system has been improved.

  • PDF

Analysis of Low Frequency Oscillations in KEPCO System (한전 실계통에서의 저주파 동요현상 해석)

  • Song, K.Y.;Kwon, S.H.;Kim, D.Y.;Kim, Y.J.;Song, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.397-401
    • /
    • 1991
  • Low frequency oscillations have been observed in KEPCO system. This paper represents how to analyze the power system by using the AESOPS program and analyze the various factors affecting the damping characteristics of these oscillations in KEPCO system of 1986. The characteristics of load, the amount of power flow on the transmission line and the gain of exciter have a significant effects on the damping of the system while the governing system has only a minor one. With the Power System Stabilizers, the stability of the power system has been increased.

  • PDF

Direct Instantaneous Voltage Control Strategy for Synchronous Generator Excitation System (동기발전기 여자시스템 제어를 위한 직접순시전압제어기법)

  • Lee, Sang-Hun;Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.218-223
    • /
    • 2007
  • This paper presents a simple, robust excitation control system for synchronous generator using direct instantaneous voltage control(DIVC) method. The proposed DIVC excitation system can operate as high dynamics of power conversion system without any control gains such as Pill controller. And the transient overshoot of generator voltage can be suppressed with a simple time constant. For the continuous control of excitation system, the fast IGBT inverter system is used in this paper for exciter's field control. The proposed control scheme is verified by the computer simulations and experimental results in the prototype generation system.

  • PDF

The PSCAD/EMTDC Modelling of JeJu AC Power System

  • Shuai, Zang;Choi, Joon-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.252-254
    • /
    • 2008
  • In this paper, the PSCAD/EMTDC modeling of JeJu AC power system with wind farms will be discussed. And the modelling of the synchronous generator, exciter, governor will also be defined in the JeJu power system by using the PSCAD/EMTDC. At the same time the fault analysis and the power flow analysis in JeJu AC power system are presented to demonstrate the JeJu AC power system can perfectly simulate the real JeJu power system function. Through the simulation using PSCAD/EMTDC we have gained the same results compared with the results accomplished by the PSS/E. so the validity of the modelling for the JeJu power system by using PSCAD/EMTDC is confirmed.

  • PDF

A Study for the Stabilization of A.C.-D.C. Power Systems Using Optimal Modulation Controllers (최적 변조 제어기를 이용한 교류-직류계통의 안정화에 관한 연구)

  • Wang, Y.P.;Hur, D.R.;Chong, H.H.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.123-126
    • /
    • 1996
  • In this paper, optimal modulation controller is designed to improve the stability of A.C. and A.C.-D.C. power system, and optimal theory is applied to select optimal modulation controller input signal Optimal modulation controller for speed governor and exciter controller system is constructed in A.C. power system, while the controller is constructed to the both control systems like AC. power system, considering ACR-AVR, APR-$A{\gamma}R$ as the control method of direct current system. It is considered that the stability of A.C. power system only and A.C.-D.C. power system against load fluctuations and disturbances under case of optimal modulation control.

  • PDF

A Response Characteristics Analysis of Synchronous Machine Generator According to an Exciter Models (여자기 모델에 따른 동기 발전기 단자전압 응답 특성분석)

  • Im, Ik-Heon;Ryu, Hong-U;Kim, Chan-Gi;Kim, Gyeong-Cheol;Kim, Jeong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.368-371
    • /
    • 1996
  • The basic function of an excitation system is to provide direct current to the synchronous machine field winding. In addition, the excitation system performs control and protective functions essential to a satisfactory performance of a power system by controlling the field voltage and thereby the field current. This paper describes the characteristics and modeling of different types of excitation systems and discusses dynamic performances. In this paper, we modified IEEE ACIA and STIA excitation system to simple system. The automatic voltage control system which had been developed by KEPRI is used for experiments and simulations.

  • PDF

A Design of Load Shedding System Considering both Angular Stability and Voltage Stability in Industrial Power System (산업용 전력계통의 주파수 안정도와 전압 안정도를 고려한 부하차단 설계)

  • Kim, Bong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.103-109
    • /
    • 2004
  • This paper has presented, taking an example of a gas separation plant, dynamic analysis on frequency decline caused by the over-loading at the generator and the knee point causing voltage instability due to reactive power required by re-acceleration of large induction motors, resulting in phenomena of failure in the conventional frequency load shedding. In order to resolve the voltage instability problem, a design of load shedding system employing under-voltage relays has been proposed to the industrial power system containing large induction motors in addition to the conventional load shedding employing frequency relays. For the purpose of dynamic analysis, models of gas turbine and governor, synchronous generator, brushless exciter, and induction motor are introduced.

A Study on the Stability Improvement of Rotor System Supported by Hydrodynamic Bearing (동수압 저어널 베어링으로 지지된 회전축계의 안정성 향상에 관한 연구)

  • 정성천;장인배;한동철
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.56-62
    • /
    • 1995
  • The anisotropic pressure distribution of the hydrodynamic bearing may generate the unstable vibration phenomenon over a certain speed. These vibrations, known as whirl, whip or rotor instability, cannot be sustained over a wide range of rotational spees. Besides these vibrations not only perturb the normal operation of a rotating machine, but may also cause serious damage to the machinery system. And, it is really impossible to change one parameter without changing others, or difficult to fabricate the modified non-circular type bearing, with all the other cures used just now, In this study, hybrid bearing with magnetic exciter is designed for stability improvement of hydrodynamic bearing rotor system without changing mechanical parameters. For stability study, eigenvalue study of the bearing-rotor system is executed by finite element method and results of analyses and experiments show the possibilities of the stability improvement of the hydrodynamic bearing system by using the electricmagnetic force.

EXCITATION SYSTEM MODERNIZATION OF THERMAL POWER PLANT

  • Kim, Chan-Ki;Kim, Jang-Mok;Rhew, Ho-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2024-2026
    • /
    • 1998
  • Many power plants built 20-30 years ago are facing problems associated with the excitation system used for controlling generator output voltage. After years of reliable operation, generation is experiencing increased down time due to maintenance associated with the exciting excitation equipment. Reliability of the excitation system has become an issue, especially where many of these generation plants may be critical to the internal processes used for manufacturing. Wear out mechanisms such as those associated with the wire wound rheostat the electromechanical voltage regulator, insulation failures of the rotating exciter and commutator deterioration have become real problems typical of many older installations. These are some of the issues that are affecting system reliability for older power plants. This paper will address typical problems associated with the old excitation systems and the justification for a replacement static excitation system used in many Paper Mills.

  • PDF