• 제목/요약/키워드: Excited-state intramolecular proton transfer

검색결과 29건 처리시간 0.02초

Spectroscopic Properties of Flavonoids in Various Aqueous-Organic Solvent Mixtures

  • Park, Hyoung-Ryun;Daun, Yu;Park, Jong Keun;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.211-220
    • /
    • 2013
  • The characteristic fluorescence properties of quercetin (QCT) and apigenin (API) were studied in various $CH_3OH-H_2O$ and $CH_3CN-H_2O$ mixed solvents. The structure of QCT is completely planar. API is not planar at the ground state but becomes nearly planar at the excited state. If the molecules are excited to the $S_1$ state in organic solvents, QCT exhibits no fluorescence due to excited state intramolecular proton transfer (ESIPT) between the -OH and the carbonyl oxygen, but API shows significant fluorescence because ESIPT occurs slowly. If the molecules are excited to the $S_2$ state, both QCT and API exhibit strong $S_2{\rightarrow}S_o$ emission without any dual fluorescence. As the $H_2O$ composition of both solvents increases, the fluorescence intensity decreases rapidly due to the intermolecular hydrogen bonding interaction. The theoretical calculation further supports these results. The change in fluorescence properties as a function of the solvatochromic parameters was also studied.

Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer

  • Lee, Junghwa;Joo, Taiha
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.881-885
    • /
    • 2014
  • Photophysics of 10-hydroxybenzo[h]quinoline (HBQ) has been in controversy, in particular, on the nature of the electronic states before and after the excited state intramolecular proton transfer (ESIPT), even though the dynamics and mechanism of the ESIPT have been well established. We report highly time resolved fluorescence spectra over the full emission frequency regions of the enol and keto isomers and the anisotropy in time domain to determine the accurate rates of the population decay, spectral relaxation and anisotropy decay of the keto isomer. We have shown that the ~300 fs component observed frequently in ESIPT dynamics arises from the $S_2{\rightarrow}S_1$ internal conversion in the reaction product keto isomer and that the ESIPT occurs from the enol isomer in $S_1$ state to the keto isomer in $S_2$ state.

Excited-state Intramolecular Proton Transfer of 1,5- and 1,8-Dihydroxyanthraquinones Chemically Adsorpted onto SiO2, SiO2-Al2O3, and Al2O3 Matrices

  • Cho, Dae-Won;Song, Ki-Dong;Park, Seong-Kyu;Jeon, Ki-Seok;Yoon, Min-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권4호
    • /
    • pp.647-651
    • /
    • 2007
  • In order to investigate the excited-state intramolecular proton transfer (ESIPT) process of dihydroxyanthraquinones (DHAQ; 1,5-DHAQ and 1,8-DHAQ) in organic-inorganic hybrid matrices, transparent SiO2, SiO2- Al2O3, and Al2O3 matrices chemically bonded with DHAQ were prepared using a sol-gel technique. The absorption maxima of 1,5- and 1,8-DHAQ in SiO2 matrices are observed at around 420 nm, whereas those of DHAQ in both SiO2-Al2O3 and Al2O3 matrices are markedly shifted to longer wavelength compared with those in SiO2 matrix. This indicates that DAHQ forms a chemical bond with an Al atom of Al2O3. The DHAQ in SiO2 matrix shows a markedly Stokes-shifted emission which is originated from the ESIPT in DHAQ. Based on the emission lifetimes of DHAQ, the ESIPT of DHAQ was found to be strongly affected by the chemical interaction with Al atom in the Al2O3-related matrices.

Intramolecular Hydrogen Bonding Effect on the Excited-State Intramolecular Charge Transfer of p-Aminosalicylic Acid

  • 김양희;윤민중
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권9호
    • /
    • pp.980-985
    • /
    • 1998
  • The excited-state intramolecular proton transfer (ESIPT) emission has been observed for 0.01 mM p-aminosalicylic acid (AS) in nonpolar aprotic solvents as demonstrated by the large Stokes' shifted fluorescence emission around 440 nm in addition to the normal emission at 330 nm. However in aprotic polar solvent such as acetonitrile, the large Stokes' shifted emission band becomes broadened, indicating existence of another emission band originated from intramolecular charge transfer (ICT). It is noteworthy that in protic solvents such as methanol and ethanol the normal and ICT emissions are quenched as the AS concentration decreases, followed by the appearance of new emission at 380 nm. These results are interpreted in terms of ESIPT coupled charge transfer in AS. Being consistent with these steady-state spectroscopic results, the picosecond time-resolved fluorescence study unravelled the decay dynamics of the ESIPT and ICT state ca. 300 ps and ca. 150 ps, respectively with ca. 40 ps for the relaxation time to form the ICT state.

Excited-State Intramolecular Proton Transfer and Related Optical Properties in a Polymeric Material System

  • Kim, Sehoon;Park, Soo-Young
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.27-28
    • /
    • 2003
  • Synthesis and properties of novel excited-state intramolecular proton transfer (ESIPT) materials recently developed in our group are described. Highly efficient ESIPT in polymeric system has been investigated theoretically and experimentally with a semi-rigid polyquinoline (PQH, PQDH) possessing an intramolecular tautomerizable hydrogen bond. Poly(aryl ether) dendrimers of three different generations that are cored with photo-tautomerizable quinoline (QGn, n=1,2,3) were also synthesized and characterized to investigate the effect of dendritic architecture on the ESIPT activity. Stimulated emission and amplified spontaneous emission in these organic materials system are discussed in terms of ESIPT activity.

  • PDF

EXCITED-STATE INTRAMOLECULAR PROTON TRANSFER IN DICOUMAROL, A $CH_2$-BRIDGED DIMER OF 4-HYDROXYCOUMARIN

  • Cho, Dae-Won
    • Journal of Photoscience
    • /
    • 제2권1호
    • /
    • pp.13-18
    • /
    • 1995
  • The steady-state emission spectra of dicoumarol (DC) in ethanol and EPA have been examined at various temperatures (77-298 K). At room temperature, a fluorescence spectrum of DC in ethanol shows a emission maximum at 350 nm. In EPA a Stokes-shifted emission band appears around 470 nm in addition to the 350 nm emission, and its intensity is enhanced as temperature decreases. This emission is attributed to a zwitterionic tautomer of DC formed by a single excited-state intramolecular proton transfer (ESIPT) along the internal hydrogen-bonding. The fluorescence lifetimes have been measured at 350 and 450 nm as a function of temperature. The fluorescence decay at 350 nm is single exponential at any temperature, whereas the one at 450 nm becomes biexponential at temperatures below 250 K. These results are discussed in terms of a conformational change followed by the ESIPT. The activation energy barrier for the conformational change has been determined to be 3.7 $\pm$ 0.2 kJ/mole.

  • PDF

Spectroscopic Properties of Quercetin-3-O-rhamnoside and Quercetin-3-O-rutinoside in Aerosol-OT Reverse Micelles

  • Park, Hyoung-Ryun;Liu, Hai-Bo;Shin, Sung-Chul;Park, Jong-Keun;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.981-987
    • /
    • 2011
  • The anomalous spectroscopic properties of quercetin-3-O-rhamnoside (QCRM) and quercetin-3-O-rutinoside (QCRT) in AOT reverse micelle were studied. The excited state intramolecular proton transfer (ESIPT) occurs through the strong hydrogen bond between the -OH at position 5 and the carbonyl oxygen. Because the ESIPT can only happens in the $S_1$ state and the Franck-Condon factor involved in the $S_2\;{\rightarrow}\;S_1$ internal conversion is small, the $S_2\;{\rightarrow}\;S_o$ emission alone appears. Because the molecular planarity is improved at the interior of the micelle, the excited state intramolecular charge transfer in the $S_1$ state is extended, and the excited state is more tolerable for any quenching effects in the micelle. Therefore, an $S_1\;{\rightarrow}\;S_o$ emission was newly discovered under this micelle microenvironment. For the $S_2\;{\rightarrow}\;S_o$ emission, the quantum yields increase but the quantum yield of the $S_1\;{\rightarrow}\;S_o$ emission approximately decreases as the water concentration in the micelle increases.

Spectroscopic Properties of Quercetin in AOT Reverse Micelles

  • Park, Hyoung-Ryun;Im, Seo-Eun;Seo, Jung-Ja;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.828-832
    • /
    • 2014
  • The spectroscopic properties of quercetin (QCT) were studied in the AOT reverse micelle by fluorescence spectroscopy. Because the molecular structure of QCT is completely planar, excited state intramolecular proton transfer (ESIPT) occurs between the -OH at C(5) and carbonyl oxygen via intramolecular hydrogen bonding. This ESIPT happens at the $S_1$ state but not at the $S_2$ state. Because QCT is a good donor-acceptor-conjugated molecule at the excited state, this molecule can emit strong fluorescence but shows no $S_1{\rightarrow}S_o$ emission due to this ESIPT. Since the $S_2{\rightarrow}S_1$ internal conversion was very slow due to the small Franck-Condon factors, $S_2{\rightarrow}S_o$ fluorescence emission was observed. All of the experimental results indicated that the QCT resided at the bound water interface and that the position of solute did not change significantly in the micelle at various water concentrations.

Transfer of Electronic Excitation Energy in Poltstyrene Films Doped with an Intramolecular Proton Transfer Compound

  • 강태종;김학진;정진갑
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권7호
    • /
    • pp.616-621
    • /
    • 1996
  • The transfer of excitation energy from solvent to solute in polystyrene films doped with 2-(2'-hydroxyphenyl)benzothiazole (HBT) which undergoes intramolecular proton transfer in excited electronic state has been studied by employing steady state and time-resolved fluorescence measurements. The degree of Forster overlap between donor and acceptor molecule in this system is estimated to be moderate. Energy transfer efficiency increases with solute concentration at low concentration range and levels off at high concentration. It is observed that the excimer form of polystyrene is largely involved in energy transfer process. Photostability of HBT in polystyrene to UV light is also investigated to get insight into the long wavelength absorption band of HBT which was observed upon electron radiation.