• Title/Summary/Keyword: Excited electronic state

Search Result 76, Processing Time 0.019 seconds

Generalized State-Space Modeling of Three Phase Self-Excited Induction Generator For Dynamic Characteristics and Analysis

  • Kumar Garlapati Satish;Kishore Avinash
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.482-489
    • /
    • 2006
  • This paper presents the generalized dynamic modeling of self-excited induction generator (SEIG) using state-space approach. The proposed dynamic model consists of induction generator; self-excitation capacitance and load model are expressed in stationary d-q reference frame with the actual saturation curve of the machine. An artificial neural network model is implemented to estimate the machine magnetizing inductance based on the knowledge of magnetizing current. The dynamic performance of SEIG is investigated under no load, with the load, perturbation of load, short circuit at stator terminals, and variation of prime mover speed, variation of capacitance value by considering the effect of main and cross-flux saturation. During voltage buildup the variation in magnetizing inductance is taken into consideration. The performance of SEIG system under various conditions as mentioned above is simulated using MATLAB/SIMULINK and the simulation results demonstrates the feasibility of the proposed system.

Comparative Study of the Preheating Methods to Extend the Life of the Fluorescent Lamp (형광등의 수명 연장을 위한 예열 방식의 비교 연구)

  • Han, Jae-Hyun;Jo, Gye-Huyn;Park, Chong-Yeun
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.29-33
    • /
    • 2003
  • This paper proposed methods of filament preheating to extend a fluorescent lamp life. The ballast for the fluorescent lamp can be classified into two main groups magnetics and electronics. The electronic ballast is lighter and smaller than the magnetic ballast and it can dim up and down. There are two ways to start the fluorescent lamp in the electronic ballast: rapid start and instant start. Also there are two methods of the driving inverter self excited oscillation and force excited oscillation. The rapid starting is different from the instant starting in that the rapid start is preheating the filament before the steady state. If there is a preheating process before the lamp ignition, the life of the fluorescent lamp can be increased. This paper presented the preheating methods for self excited oscillating system and force excited oscillating system.

  • PDF

Laser-Induced Fluorescence Excitation Spectrum and $CF_3$ Torsional Potential Energy Function of 7-Amino-4-(trifluoromethyl)coumarin in Its $S_1$ Electrode Excited State

  • 추재범;김택수;최영식
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.461-463
    • /
    • 1996
  • The laser-induced fluorescence excitation spectrum of 7-amino-4-(trifluoromethyl)coumarin in a supersonic jet has been recorded in the 340-352 nm region. The electronic band origin was observed at 28622.8 cm-1. Vibrational assignments for the three fundamental low-frequency modes and eight combination bands have been made for the S1 electronic excited state. The out-of-plane vibrations of this molecule have been characterized from the low-frequency assignments of the spectrum. The periodic potential energy function for the CF3 torsion, which satisfactorily fits the observed data, were also determined to be V(Φ)=95X(1-cos3Φ)-32X(1-cos6Φ) where Φ is the torsional angle. The relatively low torsional barrier of 99 cm-1 in S1 state could be explained by the small steric interactions between the functional groups attached to a bicyclic ring.

Tailoring the Excited-State Intramolecular Proton Transfer (ESIPT) Fluorescence of 2-(2'-Hydroxyphenyl)benzoxazole Derivatives

  • Seo, Jang-Won;Kim, Se-Hoon;Park, Sang-Hyuk;Park, Soo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1706-1710
    • /
    • 2005
  • The excited-state intramolecular proton transfer (ESIPT) fluorescence in the 2-(2'-hydroxyphenyl)benzoxazole (HBO) derivatives with different electron donor and acceptor substituents was studied by spectroscopic and theoretical methods. Changes in the electronic transition, energy levels, and orbital diagrams of HBO analogues were investigated by the semi-empirical molecular orbital calculation and were correlated with the experimental spectral position of ESIPT keto emission. It was found that the presence of substituents, regardless of their nature, resulted in the red-shifted absorption relative to HBO. However, the spectral change of the ESIPT fluorescence was differently affected by the nature of substituent: hypsochromic shift with electron donor and bathochromic shift with electron acceptor.

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation -Part I : Theoretical Performance Analysis-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.1-9
    • /
    • 2003
  • This paper deals with the nodal admittance approach steady-state frequency domain analysis of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover as the wind turbine. The steady-state performance analysis of this power conditioner designed for the renewable energy is based on the principle of equating the input mechanical power of the three-phase SEIG to the output mechanical power of the variable speed prime mover mentioned above. Us-ing the approximate frequency domain based equivalent circuit of the three-phase SEIG. The main features of the present algorithm of the steady-state performance analysis of the three-phase SEIG treated here are that the variable speed prime mover characteristics are included in the approximate equivalent circuit of the three-phase SEIG under the condition of the speed changes of the prime mover without complex computations processes. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by variable speed prime movers such as the wind turbine(WT) employing the static VAR compensator(SVC) circuit composed of the thyristor phase controlled reactor(TCR) and the thyristor switched capacitor(TSC) controlled by the PI controller is designed and considered for wind-turbine driving power conditioner.

Hydrogen Bonding Dynamics of Phenol-(H2O)2 Cluster in the Electronic Excited State: a DFT/TDDFT Study (전자 여기상태에서 phenol-(H2O)2 크러스터의 수소결합 동력학: DFT/TDDFT 연구)

  • Wang, Se;Hao, Ce;Wang, Dandan;Dong, Hong;Qiu, Jieshan
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.385-391
    • /
    • 2011
  • The time-dependent density functional theory (TDDFT) method has been carried out to investigate the excitedstate hydrogen-bonding dynamics of phenol-$(H_2O)_2$ complex. The geometric structures and infrared (IR) spectra in ground state and different electronically excited states ($S_1$ and $T_1$) of the hydrogen-bonded complex have been calculated using the density functional theory (DFT) and TDDFT method. A ring of three hydrogen bonds is formed between phenol and two water molecules. We have demonstrated that the intermolecular hydrogen bond $O_1-H_2{\cdots}O_3-H$ of the three hydrogen bonds is strengthened in $S_1$ and $T_1$ states. In contrast, the hydrogen bond $O_5-H_6{\cdots}O_1-H$ is weakened in $S_1$ and $T_1$ states. These results are obtained by theoretically monitoring the changes of the bond lengths of the hydrogen bonds and hydrogen-bonding groups in different electronic states. The hydrogen bond $O_1-H_2{\cdots}O_3-H$ strengthening in both the $S_1$ and $T_1$ states is confirmed by the calculated stretching vibrational mode of O-H (phenol) being red-shifted upon photoexcitation. The hydrogen bond strengthening and weakening behavior in electronically excited states may exist in other ring structures of phenol-$(H_2O)_n$.

Computational Study of 3-Aminophenol·(CO2)1 Cluster: CO2 Capture Ability of 3-Aminophenol

  • Sohn, Woon-Yong;Kim, Min-Ho;Kim, Sang-Su;Kang, Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2806-2808
    • /
    • 2010
  • The structure of 3-aminophenol $(CO_2)_1$ cluster was computationally studied both in the ground and the lowest singlet excited electronic states. The ground state structure and binding energy of the cluster was investigated using the second-order M$\ddoot{o}$ller-Plesset perturbation theory (MP2) at the complete basis set (CBS) limit. The excited state geometry of the cluster was obtained at the second-order approximate coupled cluster (CC2) level with cc-pVDZ basis set, and the $S_0-S_1$ absorption spectrum was simulated by calculating Franck-Condon overlap integral. The ground state geometry of the global minimum with a very high binding energy of 4.3 kcal/mol was found for the cluster, due to the interaction between amino group and $CO_2$ in addition to the strong $\pi-\pi$ interaction between the aromatic ring and $CO_2$. The excited state geometry shows a very big shift in the position of $CO_2$ compared to the ground state geometry, which results in low intensity and broad envelope in the Franck-Condon simulation.

Potential Energy Surface from Spectroscopic Data in the Photodissociation of Polyatomic Molecules

  • Kim, Hwa Jung;Kim, Yeong Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.455-462
    • /
    • 2001
  • The time-dependent tracking inversion method is studied to extract the potential energy surface of the electronic excited state in the photodissociation of triatomic molecules. Based on the relay of the regularized inversion procedure and time-dependent wave packet propagation, the algorithm extracts the underlying potential energy surface piece by piece by tracking the time-dependent data, which can be synthesized from Raman excitation profiles. We have demonstrated the algorithm to extract the potential energy surface of electronic excited state for NO2 molecule where the wave packet split on a saddle-shaped surface. Finally, we describe the merits of the time-dependent tracking inversion method compared with the time-independent inversion method and discussed several extensions of the algorithm.

Vibronic Emission Spectrum of Jet-Cooled o-Tolunitrile in a Corona Excited Supersonic Expansion

  • Park, Chan-Ho;Lee, Gi-Woo;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.881-885
    • /
    • 2006
  • We have employed a technique of corona excited supersonic expansion to generate electronically excited but jet-cooled o-tolunitrile. The vibronically well-resolved emission spectrum of the jet-cooled o-tolunitrile in the $S_{1}\rightarrow S_{0}$ transition was recorded in the uv region using a Fourier transform spectrometer equipped with a Quartz-uv beam splitter. The electronic transition and vibrational mode frequencies in the ground electronic state were accurately determined from the analysis of the spectra observed.