• 제목/요약/키워드: Excited atoms density

검색결과 18건 처리시간 0.025초

레이저 형광법에 의한 프로세싱 플라즈마 중의 수소원자 계측 (Measurement of Hydrogen Atoms in a Processing Plasma using Laser Induced Fluorescence)

  • 박원주;박성근;이광식;이동인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1307-1310
    • /
    • 1995
  • During measurement of atomic hydrogen in a silane plasma using two-photon excited laser induced fluoresecence, laser-induced dissociation of the gas was observed. This was investigated untill conditions for the input laser fluence were determined where the effect was negligible. A measurement of the atomic hydrogen distribution was then performed within the limits of these conditions. Absolute density determinations showed atomic hydrogen densities of around $3{\times}10^{17}m^{-3}$.

  • PDF

After-glows in $N_2$ RF Flowing Plasma

  • 이민욱;오수기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.489-489
    • /
    • 2012
  • The vibrational distribution of $N_2$ (B, v') in after-glows in $N_2$ RF flowing plasma was investigated. The optical emission of the after-glow was studied as function of distance from plasma. In a tube 2.1 cm, the gas pressure varied 8 Torr with 1000sccm nitrogen gas flowing late.. The discharges were excited by two ring-electrode powered by RF 13.56 MHz 100 Watt. $N_2$ (B, v') vibrational distribution was analyzed to see depends of position in after-glow. Dissociation rate of $N_2$ varied showing maximum in the late after-glow region. We studied $N_2$ RF capacitive flowing plasmas and afterglows by emission spectroscopy and by NO titration to determine the density of N-atoms.

  • PDF

레이저 흡수법을 이용한 제논 플라즈마 분석 (Analysis of Xe Plasma by LAS)

  • 양종경;허인성;이종찬;최용성;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.220-222
    • /
    • 2005
  • We can classify two cases in a way to observe an atom of gas state or a molecule using the laser. First case is way to use dispersion phenomenon like Rayleigh scattering, Thomson scattering, Mie scattering, Raman Scattering. And Second case is a way to use change phenomenon like a LAS (Laser Absorption Spectroscopy), LIF (Laser Induced Fluorescent). In this paper, we have measured the meta-stable density and the distribution by using a LAS method in Xe discharge lamp. The laser absorption spectroscopy (LAS) is useful to investigate the behavior of such species. The xenon atoms in the $1S_4$ and $1S_5$ generate excited $Xe^*$(147nm) and $Xe_{2}^*$(173nm) dimers in Xe plasma. It is found that the intensity of VUV 147nm emission is proportional to that of the IR 828nm emission, and the VUV 173nm emission is roughly proportional to that of the IR 823nm emission. The laser is used CW laser that consist of AlGaAs semiconductor and energy level is used 823.16nm wavelength. We measured signal of monochrometer from the lamp center while will change a discharge electric current by 6mA in 3mA and calculated meta-stable state density of a xenon atom through a measured value.

  • PDF

저 유전 재료의 에칭 공정을 위한 $H_2/N_2$ 가스를 이용한 Capacitively Coupled Plasma 시뮬레이션 (Capacitively Coupled Plasma Simulation for Low-k Materials Etching Process Using $H_2/N_2$ gas)

  • 손채화
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권12호
    • /
    • pp.601-605
    • /
    • 2006
  • The resistance-capacitance (RC) delay of signals through interconnection materials becomes a big hurdle for high speed operation of semiconductors which contain multi-layer interconnections in smaller scales with higher integration density. Low-k materials are applied to the inter-metal dielectric (IMD) materials in order to overcome the RC delay. Relaxation continuum (RCT) model that includes neutral-species transport model have developed to model the etching process in a capacitively coupled plasma (CCP) device. We present the parametric study of the modeling results of a two-frequency capacitively coupled plasma (2f-CCP) with $N_2/H_2$ gas mixture that is known as promising one for organic low-k materials etching. For the etching of low-k materials by $N_2/H_2$ plasma, N and H atoms have a big influence on the materials. Moreover the distributions of excited neutral species influence the plasma density and profile. We include the neutral transport model as well as plasma one in the calculation. The plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatio-temporal steady state profile could be obtained.

레이저 흡수 분광법을 이용한 He-Ne-Xe 상종가스의 외부전곡 램프의 $1s_4$ 공명준위와 $1s_5$ 준안정준위의 제논 원자 밀도에 대한 연구 (Laser absorption spectroscopy of ternary gas mixture of He-Ne-Xe in External Electrode Fluorescent Lamp (EEFL))

  • 정세훈;오필용;이준호;조광섭;최은하
    • 한국진공학회지
    • /
    • 제15권6호
    • /
    • pp.576-580
    • /
    • 2006
  • 본 논문에서는 수은 램프를 대체하기 위하여 제논 기체를 사용한 무수은 램프를 제작하여 제논 여기종 밀도에 대한 연구를 진행하였다. 진공자외선을 방사할 수 있는 $1s_4$ 공명준위의 제논 원자 밀도와 $1s_5$ 준안정준위의 제논 원자 밀도를 레이저 흡수 분광법을 사용하여 다양한 기체조건 및 방전전류에 따라서 측정하였다. 우리는 주어진 압력에서 방전전류에 따른 $1s_4$ 공명준위의 제논 원자 밀도와 $1s_5$ 준안정준위의 제논 원자 밀도를 측정하였으며 이러한 기본적인 방전 특성의 이해는 EEFL뿐만 아니라 플라스마 디스플레이에서도 발광 효율을 높이는데 매우 큰 기여를 할 것이다.

Molecular Beam Epitaxial Growth of Oxide Single Crystal Films

  • Yoon, Dae-Ho;Yoshizawa, Masahito
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.508-508
    • /
    • 1996
  • ;The growth of films have considerable interest in the field of superlattice structured multi-layer epitaxy led to realization of new devices concepts. Molecular beam epitaxy (MBE) with in situ observation by reflection high-energy electron diffraction (RHEED) is a key technology for controlled layered growth on the atomic scale in oxide crystal thin films. Also, the combination of radical oxygen source and MBE will certainly accelerate the progress of applications of oxides. In this study, the growth process of single crystal films using by MBE method is discussed taking the oxide materials of Bi-Sr-Ca-Cu family. Oxidation was provided by a flux density of activated oxygen (oxygen radicals) from an rf-excited discharge. Generation of oxygen radicals is obtained in a specially designed radical sources with different types (coil and electrode types). Molecular oxygen was introduced into a quartz tube through a variable leak valve with mass flowmeter. Corresponding to the oxygen flow rate, the pressure of the system ranged from $1{\;}{\times}{\;}10^{-6}{\;}Torr{\;}to{\;}5{\;}{\times}{\;}10^{-5}$ Torr. The base pressure was $1{\;}{\times}{\;}10^{-10}$ Torr. The growth of Bi-oxides was achieved by coevaporation of metal elements and oxygen. In this way a Bi-oxide multilayer structure was prepared on a basal-plane MgO or $SrTiO_3$ substrate. The grown films compiled using RHEED patterns during and after the growth. Futher, the exact observation of oxygen radicals with MBE is an important technology for a approach of growth conditions on stoichiometry and perfection on the atomic scale in oxide. The oxidization degree, which is determined and controlled by the number of activated oxygen when using radical sources of two types, are utilized by voltage locked loop (VLL) method. Coil type is suitable for oxygen radical source than electrode type. The relationship between the flux of oxygen radical and the rf power or oxygen partial pressure estimated. The flux of radicals increases as the rf power increases, and indicates to the frequency change having the the value of about $2{\times}10^{14}{\;}atoms{\;}{\cdots}{\;}cm^{-2}{\;}{\cdots}{\;}S^{-I}$ when the oxygen flow rate of 2.0 seem and rf power 150 W.150 W.

  • PDF

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF