• Title/Summary/Keyword: Excitation test

Search Result 552, Processing Time 0.027 seconds

SOLAR SHORT-PERIOD OSCILLATIONS EXCITED BY A SMOOTH FORCE

  • CHANG HEON-YOUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.67-72
    • /
    • 2003
  • The basic objective of helioseismology is to determine the structure and the dynamics of the Sun by analysing the frequency spectrum of the solar oscillations. Accurate frequency measurements provide information that enables us to probe the solar interior structure and the dynamics. Therefore the frequency of the solar oscillation is the most fundamental and important information to be extracted from the solar oscillation observation. This is why many efforts have been put into the development of accurate data analysis techniques, as well as observational efforts. To test one's data analysis method, a realistic artificial data set is essential because the newly suggested method is calibrated with a set of artificial data with predetermined parameters. Therefore, unless test data sets reflect the real solar oscillation data correctly, such a calibration is likely incomplete and a unwanted systematic bias may result in. Unfortunately, however, commonly used artificial data generation algorithms insufficiently accommodate physical properties of the stochastic excitation mechanism. One of reason for this is that it is computaionally very expensive to solve the governing equation directly. In this paper we discuss the nature of solar oscillation excitation and suggest an efficient algorithm to generate the artificial solar oscillation data. We also briefly discuss how the results of this work can be applied in the future studies.

Development of Underwater Motion Measurement System for Model Test of Ocean System (해양시스템 모형실험을 위한 수중운동계측시스템 개발 연구)

  • CHOI JONG-SU;HONG SUP
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.166-172
    • /
    • 2004
  • An underwater motion measurement system was constructed for applications to the model basin. A commercial motion capture system, FALCON of Motion Analysis Corp., which corrects automatically the distortion caused by refraction of the light passing through water and air, was adopted for underwater motion measurement. The modifications of FALCON system were performed: waterproofing camera housings, markers, connectors, and a new blue ring lighter. the accuracy of the motion measurement was obtained within the calibration error of 0.87mm in average and 0.89mm in standard deviation for the distance of 500mm between two markers on the calibration device. the volume of $2100mm(length)\times2100mm(breadth)\times2300mm(Height)$ was covered with 4 cameras of the underwater motion measurement system. For the performance verification, motion measurement test of a vertical mooring chain model excited at the top end was carried out. The 3D motions of mooring model were measured with variable amplitude and period of the forced excitation. Higher order motions of the mooring model were observed as the excitation period decreases. the performance of the system was verified by successfully measuring 3D motion of mooring model.

  • PDF

Theoretical research on the identification method of bridge dynamic parameters using free decay response

  • Tan, Guo-Jin;Cheng, Yong-Chun;Liu, Han-Bing;Wang, Long-Lin
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • Input excitation and output response of structure are needed in conventional modal analysis methods. However, input excitation is often difficult to be obtained in the dynamic load test of bridge structures. Therefore, what attracts engineers' attention is how to get dynamic parameters from the output response. In this paper, a structural experimental modal analysis method is introduced, which can be used to conveniently obtain dynamic parameters of the structure from the free decay response. With known damping coefficients, this analysis method can be used to identify the natural frequencies and the mode shapes of MDOF structures. Based on the modal analysis theory, the mathematical relationship of damping ratio and frequency is obtained. By using this mathematical relationship to improve the previous method, an improved experimental modal analysis method is proposed in this paper. This improved method can overcome the deficiencies of the previous method, which can not identify damping ratios and requires damping coefficients in advance. Additionally, this improved method can also identify the natural frequencies, mode shapes and damping ratios of the bridge only from the free decay response, and ensure the stability of identification process by using modern mathematical means. Finally, the feasibility and effectiveness of this method are demonstrated by a numerical example of a simply supported reinforced concrete beam.

Dual Core Differential Pulsed Eddy Current Probe to Detect the Wall Thickness Variation in an Insulated Stainless Steel Pipe

  • Angani, C.S.;Park, D.G.;Kim, C.G.;Kollu, P.;Cheong, Y.M.
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.204-208
    • /
    • 2010
  • Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study, a pulsed eddy current (PEC) differential probe with two excitation coils and two Hall-sensors was fabricated to measure the wall thinning in insulated pipelines. A stainless steel test sample was prepared with a thickness that varied from 1 mm to 5 mm and was laminated by plastic insulation to simulate the pipelines in NPPs. The excitation coils in the probe were driven by a rectangular current pulse, the difference of signals from two Hall-sensors was measured as the resultant PEC signal. The peak value of the detected signal is used to describe the wall thinning. The peak value increased as the thickness of the test sample increased. The results were measured at different insulation thicknesses on the sample. Results show that the differential PEC probe has the potential to detect wall thinning in an insulated NPP pipelines.

Modal Testing of Mechanical Structures Subject to Operational Excitation Forces

  • Gade, Svend;Moller, Nis B.;Herlufsen, Henrik;Brincker, Rune;Andersen, Palle
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1162-1165
    • /
    • 2001
  • Operational Modal Analysis also known as Output Only Modal Analysis has in the recent years been used for extracting modal parameters of civil engineering structures and is now becoming popular for mechanical structures. The advantage of the method is that no artificial excitation need to be applied to the structure or force signals to be measured. All the parameter estimation is based upon the response signals, thereby minimising the work of preparation for the test. This test case is a controlled lab set-up enabling different parameter estimation methods techniques to be used and compared to the Operational Modal Analysis. For Operational Modal Analysis two different estimation techniques are used: a non-parametric technique based on Frequency Domain Decomposition (FDD), and a parametric technique working on the raw data in time domain, a data driven Stochastic Subspace Identification (SS!) algorithm. These are compared to other methods such as traditional Modal Analysis.

  • PDF

Shaking table test of liquid storage tank with finite element analysis considering uplift effect

  • Zhou, Junwen;Zhao, Ming
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.369-381
    • /
    • 2021
  • The seismic responses of elevated tanks considering liquid-structure interaction are presented under horizontal earthquake. The scaled model tank is fabricated to study the dynamic responses of anchored tank and newly designed uplift tank with replaced dampers. The natural frequencies for structural mode are obtained by modal analysis. The dynamic responses of tanks are completed by finite element method, which are compared with the results from experiment. The displacement parallel and perpendicular to the excitation direction are both gained as well as structural acceleration. The strain of tank walls and the axial strain of columns are also obtained afterwards. The seismic responses of liquid storage tank can be calculated by the finite element model effectively and the results match well with the one measured by experiment. The aim is to provide a new type of tank system with vertical constraint relaxed which leads to lower stress level. With the liquid volume increasing, the structural fundamental frequency has a great reduction and the one of uplift tank are even smaller. Compared with anchored tank, the displacement of uplift tank is magnified, the strain for tank walls and columns parallel to excitation direction reduces obviously, while the one perpendicular to earthquake direction increases a lot, but the values are still small. The stress level of new tank seems to be more even due to uplift effect. The new type of tank can realize recoverable function by replacing dampers after earthquake.

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

Seismic response control of irregular asymmetric structure with voided slabs by distributed tuned rotary mass damper devices

  • Shujin Li;Irakoze Jean Paula;Ling Mao
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.455-467
    • /
    • 2023
  • This study focuses on demonstrating the effectiveness of vibration control of tuned rotary mass damper (TRMD) for reducing the bidirectional and torsional response of the irregular asymmetric structure with voided slabs under earthquake excitations. The TRMD arranged in plane of one-story eccentric structure is proposed as a distributed tuned rotary mass damper (DTRMD) system. Lagrange's equation is used to derive the equations of motion of the controlled system. The optimum position and number of TRMD are numerically investigated under harmonic excitation and the control effects of different distributions are discussed. Furthermore, a shaking table test is conducted under different excitation cases, including free vibration, forced vibration and seismic wave to investigate the absorption performance of the device. The numerical simulations of different distributions of the TRMDs show that the DTRMDs are more effective in reduction of the displacement response of the asymmetric structure under the same mass ratio, even when the degree of eccentricity becomes large. However, with small degree of eccentricity, the unreasonable asymmetrical arrangement may cause the increase of the peak value of the rotational angular displacement. Finally, the experimental investigations exhibit similar results of translational displacement of the structure. It is concluded that the vibration of the irregular asymmetric structure can be controlled more economically and effectively by reducing the mass ratio through reducing the quantity of TRMDs at the high stiffness end.

Control of Damping Forces by Side Clearance in Leaf Spring Damper (겹판스프링댐퍼에서 측면틈새에 의한 감쇠력 조절)

  • 김종수;김상도;제양규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.285-290
    • /
    • 1999
  • This paper describes that the leaf spring damper(LSD) developed by authors can be controled by side clearance between side cover and leaf spring. The test rig and two prototype dampers with different side clearance were manufactured. Experiments were performed to investigate the effects of side clearance on the damping of leaf spring damper. The stiffness and damping coefficients are obtained from the displacements and the reaction forces generated by rotating the eccentric shaft. All dynamic coeffficients are plotted with the excitation frequency which is adjusted by rotating speed of shaft.

  • PDF

Characteristics of Vertical Vibration Transfer according to RC Structure Systems (RC조 건축물의 구조시스템에 따른 수직진동 전달 특성 비교)

  • Chun, Ho-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.196-201
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions on the rahmen building structures and the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the heel-drop excitation experiments were conducted several times on the two type building structures. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vortical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs and excitation forces and are effected the shear wall on the path of the vibration transfer.

  • PDF