• Title/Summary/Keyword: Excitation temperature

Search Result 349, Processing Time 0.026 seconds

Synthesis and color-controllable luminescence in Dy3+-activated CaWO4 phosphors

  • Du, Peng;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.170.2-170.2
    • /
    • 2015
  • Enormous interest in trivalent rare-earth (RE) ions activated luminescent materials has been gaining owing to their promising applications in bio-imaging, solar cells, white light-emitting diodes and field-emission displays. Among these trivalent RE ions, dysprosium (Dy3+) was widely investigated due to its unique photoluminescence (PL) emissions. A series of Dy3+-activated CaWO4 phosphors were prepared by a facile high-temperature solid-state reaction method. The X-ray diffraction, PL spectra, cathodoluminescence (CL) spectra as well as PL decay curves were used to characterize the prepared samples. Under ultraviolet light excitation, the characteristic emissions of Dy3+ ions were observed in all the obtained phosphors. Furthermore, the PL emission intensity increased gradually with the increment of Dy3+ ion concentration, reaching its maximum value at an optimized Dy3+ ion concentration. Additionally, color-tunable emissions were obtained in Dy3+-activated CaWO4 system by adjusting the Dy3+ ion concentration and excitation wavelength. Ultimately, strong CL properties were observed in Dy3+-activted CaWO4 phosphors. These results suggested that the Dy3+-activted CaWO4 phosphors may have potential applications in the field of miniature color displays.

  • PDF

Output characteristics of diode-laser-pumped Tm:YAG laser (다이오드 레이저로 여기되는 Tm:YAG 레이저의 출력 특성연구)

  • 정태문
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.289-293
    • /
    • 2000
  • Diode-laser-pumped Tm:YAG laser of wavelength $2.02\mu\textrm{m}$has been manufactured and its excitation efficiency and output characteristics have been investigated. The excitation efficiency was varied from 66 to 68% with respect to the pump power, yielding pump power absorption of 87-89%. The output power was sensitively varied with the temperature of Tm:YAG rod. When the concave output coupler with a focal length of 25 mm and a transmittance of 3% was used, the maximum output power reached up to 1.2 W. The slope and optical efficiency of this Tm: YAG laser was 29% and 20% at $6^{\circ}C$, respectively.tively.

  • PDF

Precipitation of Eu3+ - Yb3+ Codoped ZnAl2O4 Nanocrystals on Glass Surface by CO2 Laser Irradiation

  • Bae, Chang-hyuck;Lim, Ki-Soo;Babu, P.
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.79-84
    • /
    • 2018
  • We present a novel and simple method to enable spatially selective $ZnAl_2O_4$ nanocrystal formation on the surface of $B_2O_3$-$Al_2O_3$-ZnO-CaO-$K_2O$ glass by employing localized laser heating. Optimized precipitation of glass-ceramics containing nanocrystals doped with $Eu^{3+}$ and $Yb^{3+}$ ions was performed by controlling $CO_2$ laser power and scan speed. Micro-x-ray diffraction and transmission electron microscopy revealed the mean size and morphology of nanocrystals, and energy dispersive x-ray spectroscopy showed the lateral distribution of elements in the imaged area. Laser power and scan speed controled annealing temperature for crystalization in the range of 1.4-1.8 W and 0.01-0.3 mm/s, and changed the size of nanocrystals and distribution of dopant ions. We also report more than 20 times enhanced downshift visible emission under ultraviolet excitation, and 3 times increased upconversion emission from $Eu^{3+}$ ions assisted by efficient sensitizer $Yb^{3+}$ ions in nanocrystals under 980 nm excitation. The confocal microscope revealed the depth profile of $Eu^{3+}$ ions by showing their emission intensity variation.

The Effect of Addition of Gd, La into $YVO_{4}:Eu^{3+}$ Red Phosphor

  • Kang, Jong-Hyuk;Im, Won-Bin;Lee, Dong-Chin;Kim, Jin-Young;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1017-1020
    • /
    • 2003
  • The effect of doping Gd, La for Y into $YVO_{4}:Eu^{3+}$ red phosphor on its photoluminescence(PL) intensity has been investigated. $YVO_{4}:$Eu-based phosphors were prepared by solid-state reaction at temperature above $1200^{\circ}C$. Under UV excitation(254, 365 nm), it was measured that $YVO_{4}:Eu^{3+}$ was superior to a commercial red phosphor (Y,Gd)$BO_{3}:Eu^{3+}$ in terms of PL intensity and CIE color coordinates. When La, Gd were doped into $YVO_{4}:Eu^{3+}$, the change in the structure of the host material was observed. In result, when the ($Y{1_x}La_{x})VO_{4}:Eu^{3+}$ phosphors were excited by 365 nm excitation, its PL intensity was improved up to about 30 % for the case of x being $0.4{\sim}0.6$.

  • PDF

Influence of Fluxing Agents in Sr3SiO5:Eu2+ Phosphors for Fabrication of Warm White Light Emitting Diodes (따뜻한 백색 LED의 제조를 위한 Sr3SiO5:Eu2+ 형광체에서의 융제 첨가 영향)

  • Kim, Hyun-Ho;Chung, Kang-Sup;Lee, Seoung-Won;Kim, Byoung-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.105-110
    • /
    • 2012
  • In this paper, a yellow phosphor $Sr_3SiO_5:Eu^{2+}$ that emits efficiently at the 450 nm excitation for warm white LED is studied. In addition, the effects of various flux $BaF_2$, $NH_4Cl$ on the emission spectra were investigated. The samples were synthesized through conventional solid state reaction under reducing atmosphere of 95% $N_2$-5% $H_2$ mixture at the high temperature. All phosphors showed a excitation band from 450 nm and broad band emission peaking at region of 580 nm. The optimal concentration of $BaF_2$ flux is 3 wt% for $Sr_3SiO_5$ with doping 0.05mol Eu phosphors fired in a reductive atmosphere. The phosphor showed highest emission peaking at 582 nm.

Nonlinear Behaviors of a Gas-filled Bubble Oscillator with Large Amplitude of Excitation (큰 압력 진폭에 의해 구동되는 기포진동체의 비선형 거동 특성)

  • 김동혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.116-124
    • /
    • 2002
  • The bubble model by Keller and Prosperetti is adapted to solve the nonlinear oscillation of a gas bubble. This formulation leads to accurate results since it introduces the energy equation instead of the polytropic assumption for the bubble interior. The numerical method used in this study is stable enough to handle large amplitude of bubble oscillation. The numerical results show some interesting nonlinear phenomena fur the bubble oscillator. The excitation changes the natural frequency of the bubble and makes some harmonic resonances at $f/f_0=1/2, 1/3$ and so on. The natural frequency of a bubble oscillator decreases compared with the linear case result, which means that the nonlinear bubble oscillation system is a "softening"system. In addition, the frequency response curve jumps up or down at a certain frequency. It is also found that there exist multi-valued regions in the frequency response curve depending on the initial conditions of bubble. The dependency of the bubble motion on the initial condition can generate extremely large pressure and temperature which might be the cause of the acoustic cavitation and the sonoluminescence.inescence.

Experiments for the Vibration Control of Steel Frame Structure Using Toggle Brace and Lead Rubber Damper (토글가새와 납-고무 제진장치를 적용한 구조물 진동제어 실험)

  • Park, Jung-Woo;Park, Jin-Young;Lee, Wan-Ha;Kim, Ki-Man;Park, Kun-Nok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.171-176
    • /
    • 2011
  • The purposes of the research were to evaluate system performance and response of building structure under external load for full scale modal-testing-tower applied toggle bracing and lead rubber damper(LRD). The dynamic properties of the structure were measured before and after installing damper under harmonic excitation using the AMD and the results were compared. The harmonic excitation condition is to increase 0.01Hz sine sweep signal from 0.49Hz to 0.63Hz. As a result of measuring resonant frequency, before installing damper is 0.55Hz and after installing damper is 0.62Hz. The experimental results after installing damper were also distinguished from simulation results and the main cause of this results is temperature dependency property of rubber material.

  • PDF

Solvent-Induced Photoemissions of High-Energy Chromophores of Conjugated Polymer MEH-PPV: Role of Conformational Disorder

  • Traiphol, Rakchart;Charoenthai, Nipaphat
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.224-230
    • /
    • 2008
  • This study examined the photoemission behaviors of isolated chains of poly[2-methoxy, 5-(2'-ethylhexyloxy)-1,4-phenylenevinylene](MEH-PPV) dispersed in various solvents including dichloromethane, chloroform and tetrahydrofuran(THF). A change in polymer-solvent interactions in these solutions caused the MEH-PPV chains to adopt different local conformations, which in turn affected their radiative de-excitation pathways. For the polymer in dichloromethane and chloroform, in which the conjugated chains are relatively extended, photoemission occurs mostly at the long chromophores with lowest HOMO-LUMO energy gap. Their emission spectra showed a main peak at ${\sim}560\;nm$. Dual photoemission of high- and low-energy chromophores was observed when the conjugated chains were forced to partially collapse in a poor solvent THF. Novel high-energy peaks and a typical low-energy peak were detected at ${\sim}414\;nm$ and ${\sim}554\;nm$, respectively. The observation of the high-energy peaks indicates significant suppression of the intrachain energy transfer process, which was attributed to the increase in conformational disorder in the partially collapsed coils. An analysis of the excitation spectra suggests that the high-energy peaks belong to short chromophores constituting of one or two repeat units. This study systematically investigated the effects of polymer concentration, temperature and single bond defects along the backbone on the photoemission of the high-energy chromophores.

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

Synthesis of the Nano-sized SrAl2O4 Phosphors by Wet Processing and its Photoluminescence Properties (SrAl2O4계 축광재료의 습식공정에 의한 나노분말 합성 및 발광특성)

  • Kim, Jung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.477-481
    • /
    • 2008
  • $Eu^{2+}$ and $Dy^{3+}$ co-doped strontium aluminate, $SrAl_2O_4$ long phosphorescent phoshor was fabricated and its photoluminescence was characterized. The phosphor, $SrAl_2O_4:Eu^{2+},Dy^{3+}$ was synthesized by a coprecipitation in which metal salts of $Sr(NO_3)_2$, $Al(NO_3)_3{\cdot}9H_2O$, were dissolved in $(NH_4)_2CO_3$ solution with adding $Eu(NO_3)_3{\cdot}5H_2O$ and $Dy(NO_3)_3{\cdot}5H_2O$ as a activator and co-activator, respectively. The coprecipitated products were separated from solution, washed, and dried in a vacuum dry oven. The dried powders were then mixed with 3 wt% $B_2O_3$ as a flux and heated at $800{\sim}1400^{\circ}C$ for 3 h under the reducing ambient atmosphere of 95%Ar+$5%H_2$ gases. For the synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$, properties of photoluminescence such as emission, excitation and decay time were examined. The emission intensity increased as the annealing temperature increased and showed a maximum peak intensity at 510 nm with a broad band from $400{\sim}650\;nm$. Monitored at 520 nm, the excitation spectrum showed a maximum peak intensity at $315{\sim}320\;nm$ wavelength with a broad band from $200{\sim}500\;nm$ wavelength. The decay time of $SrAl_2O_4:Eu^{2+},Dy^{3+}$ increased as the annealing temperature increased.