• 제목/요약/키워드: Excitation table

검색결과 118건 처리시간 0.034초

TLCD와 TSD를 이용한 새로운 형태의 양방향 감쇠기 설계변수 (Design Parameter of a New Type Bi-directional Damper Using a Tuned Liquid Column Damper and a Tuned Sloshing Damper)

  • 민경원
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.850-856
    • /
    • 2009
  • A new type bi-directional damper using a tuned liquid column damper(TLCD) and a tuned sloshing damper(TSD) is introduced in this study. Two dampers are usually needed to reduce wind-induced responses of tall buildings since they are along and across wind ones. The proposed damper has the advantage of controlling both responses with one damper. One of objectives of this study is to derive analytical dynamics to investigate coupled effects due to TLCD and TSD. Another objective is to address the effect of coupled control force due to TLCD and TSD on the dynamic characteristic of the damper based on analytical dynamics. Shaking table test is undertaken to experimentally grasp dynamic characteristics of the damper under white noise excitation. Its dynamic characteristic is expressed by the transfer function from the shaking table acceleration to the control force generated from the damper. Finally, its design parameters are identified based on the coupled dynamics, which include the mass ratio of horizontal liquid column to total liquid for a TLCD, the participation factor of the fundamental liquid sloshing for a TSD and damping ratio for both cases.

다지점 진동대를 이용한 원자력발전소 배관계통의 내진성능실험 (Seismic Capacity Test of Nuclear Piping System using Multi-platform Shake Table)

  • 정진환;계만수;서영득;최형석;김민규
    • 한국지진공학회논문집
    • /
    • 제17권1호
    • /
    • pp.21-31
    • /
    • 2013
  • In this study, dynamic characteristics and seismic capacity of the nuclear power plant piping system are evaluated by model test results using multi-platform shake table. The model is 21.2 m long and consists of straight pipes, elbows, and reducers. The stainless steel pipe diameters are 60.3 mm (2 in.) and 88.9 mm (3 in.) and the system was assembled in accordance with ASME code criteria. The dynamic characteristics such as natural frequency, damping and acceleration responses of the piping system were estimated using the measured acceleration, displacement and strain data. The natural frequencies of the specimen were not changed significantly before and after the testing and the failure and leakage of the piping system was not observed until the final excitation. The damping ratio was estimated in the range of 3.13 ~ 4.98 % and it is found that the allowable stress(345 MPa) according to ASME criteria is 2.5 times larger than the measured maximum stress (138 MPa) of the piping system even under the maximum excitation level of this test.

지진에 의한 원전 보조건물 전단벽의동적 응답 특성 추정 (Seismic Response Characterization of Shear Wall in Auxiliary Building of Nuclear Power Plant)

  • 모터 라만;타미나 나하르;백건휘;김두기
    • 한국지진공학회논문집
    • /
    • 제25권3호
    • /
    • pp.93-102
    • /
    • 2021
  • The dynamic characterization of a three-story auxiliary building in a nuclear power plant (NPP) constructed with a monolithic reinforced concrete shear wall is investigated in this study. The shear wall is subjected to a joint-research, round-robin analysis organized by the Korea Atomic Energy Research Institute, South Korea, to predict seismic responses of that auxiliary building in NPP through a shake table test. Five different intensity measures of the base excitation are applied to the shaking table test to get the acceleration responses from the different building locations for one horizontal direction (front-back). Simultaneously to understand the global damage scenario of the structure, a frequency search test is conducted after each excitation. The primary motivation of this study is to develop a nonlinear numerical model considering the multi-layered shell element and compare it with the test result to validate through the modal parameter identification and floor responses. In addition, the acceleration amplification factor is evaluated to judge the dynamic behavior of the shear wall with the existing standard, thus providing theoretical support for engineering practice.

Optimal Design of Electromagnetic Actuator with Divided Coil Excitation to Increase Clamping Force

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.446-450
    • /
    • 2014
  • This paper performed the optimal design of electromagnetic linear actuator with divided coil excitation. The table of orthogonal array and response surface methodology (RSM) are applied to maximize the clamping force of the electromagnetic linear actuator with colenoid (COL) and multipolar solenoid (MPS) excitation. The analysis results show that the clamping force of the optimal models with COL and MPS excitation are increased by 41% and 54% at the gap of 0mm compared to the initial models, respectively.

내진실험 연구를 위한 다지점 가진 지동대의 활용 (Applications of Seismic Test using Multi-platform Shaking Table System)

  • 최형석;김남식;정진환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.126-131
    • /
    • 2013
  • As the testing instrument for seismic research, the multi-platform shaking table system of SESTEC in the Pusan National University was introduced to suggest the multi-support shaking table testing methods and also to investigate its ability and applicability. 2 spans single-pylon cable-stayed bridge model, 3 spans girder bridge model and nuclear piping system model are presented and the acceleration and displacement table feedbacks of the each tests are compared to verify the simultaneous excitation ability in time domain and frequency domain.

  • PDF

Seismic response of a high-rise flexible structure under H-V-R ground motion

  • We, Wenhui;Hu, Ying;Jiang, Zhihan
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.169-181
    • /
    • 2022
  • To research the dynamic response of the high-rise structure under the rocking ground motion, which we believed that the effect cannot be ignored, especially accompanied by vertical ground motion. Theoretical analysis and shaking table seismic simulation tests were used to study the response of a high-rise structure to excitation of a H-V-R ground motion that included horizontal, vertical, and rocking components. The use of a wavelet analysis filtering technique to extract the rocking component from data for the primary horizontal component in the first part, based on the principle of horizontal pendulum seismogram and the use of a wavelet analysis filtering technique. The dynamic equation of motion for a high-rise structure under H-V-R ground motion was developed in the second part, with extra P-△ effect due to ground rocking displacement was included in the external load excitation terms of the equation of motion, and the influence of the vertical component on the high-rise structure P-△ effect was also included. Shaking table tests were performed for H-V-R ground motion using a scale model of a high-rise TV tower structure in the third part, while the results of the shaking table tests and theoretical calculation were compared in the last part, and the following conclusions were made. The results of the shaking table test were consistent with the theoretical calculation results, which verified the accuracy of the theoretical analysis. The rocking component of ground motion significantly increased the displacement of the structure and caused an asymmetric displacement of the structure. Thus, the seismic design of an engineering structure should consider the additional P-△ effect due to the rocking component. Moreover, introducing the vertical component caused the geometric stiffness of the structure to change with time, and the influence of the rocking component on the structure was amplified due to this effect.

진동대 실험에 의한 RC부재의 이력거동 (Hysterisis Rules of RC member by Shaking Table Test)

  • 이대형;양동욱;백민철;홍현기;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.9-10
    • /
    • 2009
  • 본 연구는 진동대 실험을 통하여 철근콘크리트 부재의 이력거동 모델을 규명하고자 한다. 부재의 이력거동은 지진과 같은 과도한 하중에 의한 부재의 안전성을 규명하는데 필수적이다. 질량에 따른 이력거동의 차이를 조사하였다.

  • PDF

진동대를 이용한 Geomembrane-Geotextile 사이의 동적 접촉마찰특성 평가

  • 김동진;서민우;박준범
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.179-182
    • /
    • 2002
  • Geosynthetics are widely used in landfill for filtration, drainage, separation and so on. For many landfill failure cases, interfaces of geosynthetics can be potential failure surfaces. Therefore, it is very Important to estimate the interface properties of geosynthetics. In this study, shaking table tests were peformed between smooth geomembrane and geotextile. From the test results, it was found that there is a limited acceleration that can be transmitted from smooth geomembrane to geotextile. And the influence of normal stress and frequencies of excitation were discussed.

  • PDF

Vibration characteristic of rubber isolation plate-shell integrated concrete liquid-storage structure

  • Cheng, Xuansheng;Qi, Lei;Zhang, Shanglong;Mu, Yiting;Xia, Lingyu
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.691-703
    • /
    • 2022
  • To obtain the seismic response of lead-cored rubber, shape memory alloy (SMA)-rubber isolation Plate-shell Integrated Concrete Liquid-Storage Structure (PSICLSS), based on a PSICLSS in a water treatment plant, built a scale experimental model, and a shaking table test was conducted. Discussed the seismic responses of rubber isolation, SMA-rubber isolation PSICLSS. Combined with numerical model analysis, the vibration characteristics of rubber isolation PSICLSS are studied. The results showed that the acceleration, liquid sloshing height, hydrodynamic pressure of rubber and SMA-rubber isolation PSICLSS are amplified when the frequency of seismic excitation is close to the main frequency of the isolation PSICLSS. The earthquake causes a significant leakage of liquid, at the same time, the external liquid sloshing height is significantly higher than internal liquid sloshing height. Numerical analysis showed that the low-frequency acceleration excitation causes a more significant dynamic response of PSICLSS. The sinusoidal excitation with first-order sloshing frequency of internal liquid causes a more significant sloshing height of the internal liquid, but has little effect on the structural principal stresses. The sinusoidal excitation with first-order sloshing frequency of external liquid causes the most enormous structural principal stress, and a more significant external liquid sloshing height. In particular, the principal stress of PSICLSSS with long isolation period will be significantly enlarged. Therefore, the stiffness of the isolation layer should be properly adjusted in the design of rubber and SMA-rubber isolation PSICLSS.