• 제목/요약/키워드: Excitation table

검색결과 118건 처리시간 0.024초

2차원 진동 미세가공을 위한 가진테이블 개발 (Development of Excitation Table for 2-dimensional Vibrational Micro Cutting)

  • 김기대;이강희
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.62-67
    • /
    • 2012
  • To realize 2-dimensional vibrational micro cutting in milling and drilling, etc. where the tools rotate, it could be a promising way to vibrate a workpiece instead of a rotating tool itself. In this study, an excitation work-table was developed using two piezoelectric materials orthogonally arranged. The trochoidal trajectory of a cutting tool which is necessary for 2D vibrational cutting is enabled in the excitation condition of higher excitation frequency and larger amplitude of vibration and the cutting condition of smaller diameter of cutting tool and lower spindle speed. The various trochoidal trajectories of a cutting tool could be generated in the excitation work-table by adjusting the input voltages to two piezoelectric materials and the phase between the two voltages and the trajectories could be readily used for the 2D vibrational micro cutting.

고하중 차량의 다목적 테스트를 위한 다축 가진 테이블의 기구학 해석 (Kinematic Analysis of Multi Axis Shaking Table for Multi-Purpose Test of Heavy Transport Vehicle)

  • 진재현;나홍철;전승배
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.823-829
    • /
    • 2012
  • An excitation table is commonly used for vibration and ride tests for parts or assemblies of automobiles, aircrafts, or other heavy systems. The authors have analyzed several kinematic properties of an excitation table that is under development for heavy transport vehicles. It consists of one table and 7 linear hydraulic actuators. The authors have performed mobility analysis, inverse kinematics, forward kinematics, and singularity analysis. Especially, we have proposed a fast forward kinematic solution considering the limited motion of the excitation table. On the assumption that the motion variables such as rotation angles and displacements are small, the forward kinematic problem is converted to the observer problem of a linear system. This provides a fast solution. Also we have verified that there are no singularity points in the working range by numerical analysis.

가진입력의 크기에 따른 동조액체기둥감쇠기의 비선형 특성 (Nonlinear Characteristic of a Tuned Liquid Column Damper under Various Excitation Amplitudes)

  • 이성경;이혜리;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.842-849
    • /
    • 2009
  • The objective of this study is to investigate design parameters of a tuned liquid column damper(TLCD), which is affected by various excitation amplitudes, through shaking table test. Design parameters of a TLCD are examined based on the equivalent tuned mass damper(TMD) model of a TLCD, in which the nonlinear damping of a TLCD is transposed to equivalent viscous damping. Shaking table test is carried out for a TLCD specimen subjected to harmonic waves with various amplitudes. Transfer functions are ratios of liquid displacement of TLCD and control force produced by a TLCD, respectively, with respect to the acceleration excited by a shaking table. They are derived based on the equivalent TMD model of a TLCD. Then, the variation of design parameters according to the excitation amplitude is examined by comparing analytical transfer functions with experimental ones. Finally, the dissipation energy due to the damping of a TLCD, which is experimentally observed from the shaking table test, is examined according to the excitation amplitude. Comparisons between test results and analytical transfer functions showed that natural frequencies of TLCD and the ratio of the liquid mass in a horizontal column to the total liquid mass does not depend on the excitation amplitude, while the damping ratio of a TLCD increases with larger excitation amplitudes.

  • PDF

가진입력의 크기에 따른 동조액체기둥감쇠기의 비선형 특성 (Nonlinear Characteristic of a Tuned Liquid Column Damper under Various Excitation Amplitude)

  • 이성경;이혜리;민경원
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1167-1176
    • /
    • 2009
  • The objective of this study is to investigate design parameters of a tuned liquid column damper(TLCD), which is affected by various excitation amplitude, through shaking table test. Design parameters of a TLCD are examined based on the equivalent tuned mass damper(TMD) model of a TLCD, in which the nonlinear damping of a TLCD is transposed to equivalent viscous damping. Shaking table test is carried out for a TLCD specimen subjected to harmonic waves with various amplitude. Transfer functions are ratios of liquid displacement of TLCD and control force produced by a TLCD, respectively, with respect to the acceleration excited by a shaking table. They are derived based on the equivalent TMD model of a TLCD. Then, the variation of design parameters according to the excitation amplitude is examined by comparing analytical transfer functions with experimental ones. Finally, the dissipation energy due to the damping of a TLCD, which is experimentally observed from the shaking table test, is examined according to the excitation amplitude. Comparisons between test results and analytical transfer functions showed that natural frequencies of TLCD and the ratio of the liquid mass in a horizontal column to the total liquid mass do not depend on the excitation amplitude, while the damping ratio of a TLCD increases with larger excitation amplitude.

양방향 평면진동을 이용한 미세구멍가공 (Micro Drilling using 2-directional Vibration in a Plane)

  • 김기대
    • 한국기계가공학회지
    • /
    • 제9권4호
    • /
    • pp.38-43
    • /
    • 2010
  • By generating 2-directional vibration in a xy plane of workpiece table, a newly developed micro drilling using 2-directional vibration was carried out. The vibration was produced by applying sinusoidal voltages to the orthogonally arranged piezoelectric materials built in the workpiece excitation table. Through the micro-drilling experiments using poly-carbonate and brass material, it was found that micro drilling using 2-directional vibration in a workpiece table could be an efficient method to enhance the form accuracy of machined workpiece by suppressing burr formation at both entry and exit region. A higher form accuracy could be obtained by increasing stiffness of feeding mechanism, decrease of geometric tolerance of combining jig, and development of high performance excitation table which generates amplified vibration at higher frequency.

Effect of excitation intensity on slope stability assessed by a simplified approach

  • Korzec, Aleksandra;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • 제21권6호
    • /
    • pp.601-612
    • /
    • 2021
  • The paper concerns the selection of a design accelerograms used for the slope stability assessment under earthquake excitation. The aim is to experimentally verify the Arias Intensity as an indicator of the excitation threat to the slope stability. A simple dynamic system consisting of a rigid block on a rigid inclined plane subjected to horizontal excitation is adopted as a slope model. Strong ground motions recorded during earthquakes are reproduced on a shaking table. The permanent displacement of the block serves as a slope stability indicator. Original research stand allows us to analyse not only the relative displacement but also the acceleration time history of the block. The experiments demonstrate that the Arias Intensity of the accelerogram is a good indicator of excitation threat to the stability of the slope. The numerical analyses conducted using the experimentally verified extended Newmark's method indicate that both the Arias Intensity and the peak velocity of the excitation are good indicators of the impact of dynamic excitation on the dam's stability. The selection can be refined using complementary information, which is the dominant frequency and duration of the strong motion phase of the excitation, respectively.

2차원 고주파 진동을 이용한 미세 밀링가공 (Micro Milling using High Frequency 2-dimensional Vibration)

  • 김기대
    • 한국기계가공학회지
    • /
    • 제9권6호
    • /
    • pp.66-70
    • /
    • 2010
  • Using two piezoelectric materials orthogonally arranged, 2-dimensional(2D) vibration in a excitation workpiece table was generated. In this study, micro milling using high frequency 2D vibration was proposed, whose locus of cutting tool is combined with original trochoid locus of milling tool and 2D elliptical locus of excitation table. From the cutting results of 2D vibrational micro milling of nickel alloy, it was observed that the machining quality and the roughness of machined surface were enhanced compared to conventional milling in a side cutting whose immersion ration is relatively low, whereas there was little betterment in a slot cutting.

미세밀링 가공 시 2차원 진동이 표면거칠기에 미치는 영향 (Effects of 2-dimensional vibration on the surface roughness in micro milling)

  • 김기대
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.81-86
    • /
    • 2013
  • For a 2-dimensional(2D) vibration milling, an excitation work-table was developed using two piezoelectric materials orthogonally arranged, where the trochoidal trajectory of a milling tool is combined with 2 dimensional elliptical vibration of a work-table. Applying 3kHz excitation frequency and 7~8mm amplitude of vibration to micro milling process with brass and nickel materials, the roughness in both bottom and side surface is much more improved compared to the surface by conventional milling process, which is attributed to decreased frictional force, increased cutting speed, and rubbing effect of a 2 dimensional vibration.

PSD선도를 이용한 국내노면의 상관성 분석에 관한 연구 (The Study on Interrelationship Analysis of Domestic Road Using PSD)

  • 김찬중;권성진;이봉현;김현철;배철용
    • 한국소음진동공학회논문집
    • /
    • 제16권8호
    • /
    • pp.806-813
    • /
    • 2006
  • An important factor of vibration test using MAST(multi axial simulation table) system is the reliance of input excitation source. Generally the generation of input excitation source is obtained by the measured data on special road in proving ground. The measured data on special road have more exciting energy than the data of real fields, therefore the time and expense for test can be reduced. But the magnitude of input excitation source must be defined by comparison with the excited energy on real field. The object of this paper makes the data base of domestic roads for the definition of input excitation source which is obtained by the measured data on special road in proving ground. These real field data on domestic roads are analyzed by the power spectral density and interrelationship index.

힘-제어 진동대를 이용한 전단건물의 조화진동 (Harmonic Excitation of Shear Building with Force-Controlled Shaking Table)

  • 이상호
    • 한국산학기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.853-859
    • /
    • 2015
  • 진동대 실험 시 진동대와 구조물 사이에 발생하는 상호작용을 파악하기 위하여 1자유도 전단건물의 조화진동 실험을 전자기력으로 구동되는 힘-제어 진동대를 이용하여 수행하였다. 실험에서는 진동대와 전단건물의 수평방향 가속도를 측정하였으며, 실험 결과를 이해하기 위한 방법으로 전단건물의 진동대 실험을 조화하중이 작용하는 비구속 2자유도계로 이상화하였다. 이상화 된 이론모델의 운동방정식으로부터 전단건물과 진동대의 가속도를 구하였으며, 이들 가속도를 가진력에 대한 비로 나타낸 증폭계수와 진동대의 가속도 진폭에 대한 전단건물의 가속도 진폭의 비인 전달계수를 구하였으며, 이들 결과를 실험결과와 비교하여 진동대와 전단건물 사이에 발생하는 상호작용을 파악하였다.