• Title/Summary/Keyword: Excitation force

Search Result 581, Processing Time 0.033 seconds

Wear Characteristics of Multi- span Tube Due to Turbulence Excitation (다경간 전열관의 난류 가진에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Sung, Bong-Zoo;Park, Chi-Yong;Ryu, Ki-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.904-911
    • /
    • 2006
  • A modified energy method for the fretting wear of the steam generator tube is proposed to calculate the wear-out depth between the nuclear steam generator tube and its support. Estimation of fretting-wear damage typically requires a non-linear dynamic analysis with the information of the gap velocity and the flow density around the tube. This analysis is very complex and time consuming. The basic concept of the energy method is that the volume wear rate due to the fretting-wear phenomena Is related to work rate which is time rate of the product of normal contact force and sliding distance. The wearing motion is due to dynamic interaction between vibrating tube and its support structure, such as tube support plate and anti-vibration bar. It can be assumed that the absorbed work rate would come from turbulent flow energy around the vibrating tube. This study also numerically obtains the wear-out depth with various wear topologies. A new dissection method is applied to the multi-span tubes to represent the vibrational mode. It turns out that both the secondary side density and the normal gap velocity are important parameters for the fretting-wear phenomena of the steam generator tube.

SOLAR SHORT-PERIOD OSCILLATIONS EXCITED BY A SMOOTH FORCE

  • CHANG HEON-YOUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.67-72
    • /
    • 2003
  • The basic objective of helioseismology is to determine the structure and the dynamics of the Sun by analysing the frequency spectrum of the solar oscillations. Accurate frequency measurements provide information that enables us to probe the solar interior structure and the dynamics. Therefore the frequency of the solar oscillation is the most fundamental and important information to be extracted from the solar oscillation observation. This is why many efforts have been put into the development of accurate data analysis techniques, as well as observational efforts. To test one's data analysis method, a realistic artificial data set is essential because the newly suggested method is calibrated with a set of artificial data with predetermined parameters. Therefore, unless test data sets reflect the real solar oscillation data correctly, such a calibration is likely incomplete and a unwanted systematic bias may result in. Unfortunately, however, commonly used artificial data generation algorithms insufficiently accommodate physical properties of the stochastic excitation mechanism. One of reason for this is that it is computaionally very expensive to solve the governing equation directly. In this paper we discuss the nature of solar oscillation excitation and suggest an efficient algorithm to generate the artificial solar oscillation data. We also briefly discuss how the results of this work can be applied in the future studies.

Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting (2nd Report : Analyzing of Forced Vibration with Damping) (디젤기관 추진축계의 연성진동에 관한 연구 (제2보: 강제 감쇠 연성진동 해석))

  • 이돈출;김의간;전효중
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.99-107
    • /
    • 2000
  • With the results of calculation for natural frequencies, the forced reponses of coupled vibration of propulsion shafting were analysed by the modal analysis method. For the forced response analysis, axial exciting forces, axial damper/detuner, propeller exciting forces and damping coefficients were extensively investigated. As the conclusion of this study, some items are cleared as next. - The torsional amplitudes are not influenced by the radial excitation forces. - The axial vibrational amplitudes are influenced by the tangential exciting forces. An increase of amplitude is observed for the speed range in the neighbourhood of any torsional critical speed. - The coupling effect becomes larger if torsional and axial critical speed are closer together. - The axial exciting force of propeller is relatively strong, comparing with those of axial forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, as a resume one can say, that- Torsional vibration calculation with the classical one dimension model is still valid. - The influence of torsional excitation at each crank upon the axial vibration is impotent, especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimension model is insufficient in most of cases. - The torsional exciting torque of propeller can be neglected in most of cases. But, the axial exciting forces of propeller can not be neglected for calculating axial vibration of propulsion shafting.

  • PDF

A SIMPLIFIED METHOD TO PREDICT FRETTING-WEAR DAMAGE IN DOUBLE $90^{\circ}$ U-BEND TUBES

  • Choi, Seog-Nam;Yoon, Ki-Seok;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.616-621
    • /
    • 2003
  • Fluid-elastic instability is believed to be a cause of the large-amplitude vibration and resulting rapid wear of heat exchanger tubes when the flow velocity exceeds a critical value. For sub-critical flow velocities, the random turbulence excitation is the main mechanism to be considered in predicting the long-term wear of steam generator tubes. Since flow-induced interactions of the tubes with tube supports in the sub-critical flow velocity can cause a localized tube wear, tube movement in the clearance between the tube and tube support as well as the normal contact force on the tubes by fluid should be maintained as low as possible. A simplified method is used for predicting fretting-wear damage of the double $90^{\circ}$U-bend tubes. The approach employed is based on the straight single-span tube analytical model proposed by Connors, the linear structural dynamic theory of Appendix N-1300 to ASME Section III and the Archard's equation for adhesive wear. Results from the presented method show a similar trend compared with the field data. This method can be utilized to predict the fretting-wear of the double $90^{\circ}$U-bend tubes in steam generators.

  • PDF

Shaking Table Test of a Full Scale 3 Story Steel Frame with Friction Dampers (마찰형 감쇠장치가 설치된 실물크기 3층 철골프레임의 진동대 실험)

  • Bae, Chun-Hee;Kim, Yeon-Whan;Lee, Sang-Hyun;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.862-873
    • /
    • 2007
  • Energy dissipation devices can be considered as an alternative for the seismic performance enhancement of existing structures based on the strengthened seismic design code. In this study, seismic response mitigation effects of friction dampers are investigated through the shaking table test of a full scale 3 story building structure. Frist, the bilinear force-displacement relationship of a structure-brace-friction damper system and the effect of brace-friction damper on the increase of frequency and damping ratio are identified. Second, frequency, displacement, and torque dependent characteristics of the friction damper are investigated by using harmonic load excitation tests. Finally, the shaking table tests are performed for a full scale 3 story steel frame. System identification results using random signal excitation indicated that brace-friction damper increased structural damping ratio and frequency, and El Centro earthquake test showed that brace-friction damper reduced the peak displacement and acceleration significantly. In particular, it was observed that the damping effect due to friction damper becomed obvious when the structure was excited by more intensive load causing frequent slippage of the friction dampers.

Vibration mode characteristics on a propeller in very large vessel (대형선박의 추진기 진동 모드 특성)

  • 김재홍;조대승;한성용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.955-962
    • /
    • 2002
  • According to the trends of construction of large size vessel with high power, the natural frequencies of the bending modes of propeller blades have been lower than the past. Therefore, it is expected that the noise and vibration problems of the marine propeller are frequently occurred. As main issue of the propeller noise and vibration problem, the cavitation noise and singing noise due to the flow induced excitation of the bending modes of propeller blade in the high frequency range has been studied by the hydrodynamic researchers in the view point of the excitation force reduction. In this paper, the vibration mode characteristics of propeller with a large diameter in very large vessel are investigated by the vibration analysis of the finite element method using MSC/Nastran and the vibration measurement by the impact test on the propeller blade. According to the results, the natural frequencies of various blade bending modes in water entrained condition could be estimated from the natural frequencies taken by the measurement and free vibration analysis in the dry condition, and it could be estimated how the high frequency noise such as singing is generated from the blade bending modes.

  • PDF

Equivalent damping ratio based on the earthquake response of a SDOF structure with a MR damper (MR 감쇠기가 설치된 단자유도 구조물의 지진응답에 기초한 등가감쇠비)

  • Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.879-885
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

Vibration Mode Characteristics on a Propeller in very Large Vessel (대형선박의 추진기 진동 모우드 특성)

  • Kim J.H.;Cho D.S.;Han S.Y.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.97-106
    • /
    • 2005
  • According to the trends of construction of large size vessel with high power the natural frequencies of the bending modes of propeller blades have been lower than the past. Therefore, it is expected that the noise and vibration problems of the marine propeller are frequently occurred. As main issue of the propeller noise and vibration problem, the cavitation noise and singing noise due to the flow induced excitation of the bending modes of propeller blade in the high frequency range has been studied by the hydrodynamic researchers in the view point of the excitation force reduction. In this paper, the vibration mode characteristics of propeller with a large diameter in very large vessel are investigated by the vibration analysis of the finite element method using MSC/Nastran and the vibration measurement by the impact test on the propeller blade. According to the results, the natural frequencies of various blade bending modes in water entrained condition could be estimated from the natural frequencies taken by the measurement and free vibration analysis in the dry condition, and it could be estimated how the high frequency noise such as singing is generated from the blade bending modes.

  • PDF

Closed-form optimum tuning formulas for passive Tuned Mass Dampers under benchmark excitations

  • Salvi, Jonathan;Rizzi, Egidio
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.231-256
    • /
    • 2016
  • This study concerns the derivation of optimum tuning formulas for a passive Tuned Mass Damper (TMD) device, for the case of benchmark ideal excitations acting on a single-degree-of-freedom (SDOF) damped primary structure. The free TMD parameters are tuned first through a non-linear gradient-based optimisation algorithm, for the case of harmonic or white noise excitations, acting either as force on the SDOF primary structure or as base acceleration. The achieved optimum TMD parameters are successively interpolated according to appropriate analytical fitting proposals, by non-linear least squares, in order to produce simple and effective TMD tuning formulas. In particular, two fitting models are presented. The main proposal is composed of a simple polynomial relationship, refined within the fitting process, and constitutes the optimum choice. A second model refers to proper modifications of literature formulas for the case of an undamped primary structure. The results in terms of final (interpolated) optimum TMD parameters and of device effectiveness in reducing the structural dynamic response are finally displayed and discussed in detail, showing the wide and ready-to-use validity of the proposed optimisation procedure and achieved tuning formulas. Several post-tuning trials have been carried out as well on SDOF and MDOF shear-type frame buildings, by confirming the effective benefit provided by the proposed optimum TMD.

Study on the Reduction of Vibration, Acoustic Noise of SRM by DC Excitation Commutation Method (SRM의 직류여자 전류방식에 의한 진동, 소음의 저감 대책에 관한 연구)

  • Hwang, Yeong-Mun;Jeong, Tae-Uk;O, Seong-Gyu;Chu, Yeong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Switched reluctance motor(SRM) has simple magnetic structure, and requires simple power electronic driving circuit. It is very useful for wide range adjustable speed drive system. But, SRM drive generates large vibration and acoustic noise because it is commutated individually by step pulse m.m.f of each phase pole. In the vibration and acoustic noise characteristics. The considerable vibration and noise is induced by radial deforming of stator, so the frequency of dominant vibration and noise is coincident with the frequency of natural mode frequency of mechanical structure. This radial vibration force is generated in the phase commutation region. This paper suggests the new electromagnetic structure of SRM with auxiliary commutation winding which is excited by direct current. This phase and commutation winding are coupled magnetically between one phase winding and the other. Therefore, the switch-off phase current is absorbed by the another phase winding. By this interaction of phase and commutation winding in commutation mechanism, vibration and noise is reduced. And this reduction effect is examined by the test of prototype machine. As a result, SRM with DC exciting commutation winding is very useful to reduce vibration and acoustic noise.

  • PDF