• Title/Summary/Keyword: Excitation force

Search Result 581, Processing Time 0.025 seconds

High Performance Control of Linear Hybrid Stepping Motor with Force Ripple Compensator (추력 리플을 보상하는 선형 하이브리드 스테핑 전동기의 고성능 제어)

  • Hwang Tai-Sik;Seok Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.527-533
    • /
    • 2005
  • The linear hybrid stepping motors (LHSM) has been widely used due to its simple structure and low cost control. Despite of its attractive features, the conventional LHSM has the multiples of 4th times harmonic reluctance force from excitation current and cogging force from space harmonic of permeance. This paper propose a new LHSM, which the mechanical and electrical phase difference are $45^{\circ}$. The proposed motor shows a unique ability to deliver low detent force and we propose a closed-loop control scheme to attack the ripple force for high performance applications. An analytical and experimental comparison between conventional and proposed LHSM is evaluated to confirm the effectiveness of the proposed modeling and control scheme.

Design Parameter of a New Type Bi-directional Damper Using a Tuned Liquid Column Damper and a Tuned Sloshing Damper (TLCD와 TSD를 이용한 새로운 형태의 양방향 감쇠기 설계변수)

  • Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.850-856
    • /
    • 2009
  • A new type bi-directional damper using a tuned liquid column damper(TLCD) and a tuned sloshing damper(TSD) is introduced in this study. Two dampers are usually needed to reduce wind-induced responses of tall buildings since they are along and across wind ones. The proposed damper has the advantage of controlling both responses with one damper. One of objectives of this study is to derive analytical dynamics to investigate coupled effects due to TLCD and TSD. Another objective is to address the effect of coupled control force due to TLCD and TSD on the dynamic characteristic of the damper based on analytical dynamics. Shaking table test is undertaken to experimentally grasp dynamic characteristics of the damper under white noise excitation. Its dynamic characteristic is expressed by the transfer function from the shaking table acceleration to the control force generated from the damper. Finally, its design parameters are identified based on the coupled dynamics, which include the mass ratio of horizontal liquid column to total liquid for a TLCD, the participation factor of the fundamental liquid sloshing for a TSD and damping ratio for both cases.

Vibration Analysis of the Rotating Hybrid Cylindrical Shells Laminated with Metal and Composite (회전하는 금속복합재료 혼합적층 원통쉘의 진동해석)

  • Lee, Young-Sin;Kim, Young-Wann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.968-977
    • /
    • 1996
  • The linear/nonlinear vibration response of the rotating hybrid cylindrical shell with simply supported boundary condition is studied. The Ritz-Galerkin method is applied to obtain the nonlinear frequency equation, which excludes in-plane and rotatory inertia but includes bending stretching coupling terms. The bifurcation phenomena for the linear frequency and the frequency ratio(nonlinear/linear frequency ratio) are presented. The hybrid cylindrical shells are composed of composite(GFRP, CFRP) metal(aluminium, steel) with symmetric and antisymmetric stacking sequence. The effects of the Coriolis and centrifugal force are considered The results also present the effects of length-to- radies ratio, radius-to-thickness ratio, the circumferential wave number, the stacking sequence, the material property, the initial excitation amplitude and the rotating speed. The present linear frequency results are compared with those of the available literature.

Harmonic Excitation of Shear Building with Force-Controlled Shaking Table (힘-제어 진동대를 이용한 전단건물의 조화진동)

  • Lee, Sang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.853-859
    • /
    • 2015
  • 1-DOF shear building was designed, built and tested to investigate the interactions between the shear building and the shaking table excited harmonically by the electro-magnetic forces. In the experiments horizontal accelerations of the shaking table and the shear building were measured. To understand the experimental results experimental setting was modeled as an unconstrained 2-DOF system under the hormonic forces. The responses of the shear building and the shaking table of the unconstrained 2-DOF system were found with the equations of motions. The magnification factors of the table and the shear building with respect to the amplitude of the harmonic forces and the transmission of the shear building with respect to the table excitations were found and compared with the experimental results.

Vibration Analysis for Car Installed Transverse Engine Through Experimetal Method (실험적 방법을 통한 횡 탑재 엔진 차량에 대한 진동 해석)

  • 양성모;김남응;김중희
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.769-777
    • /
    • 1999
  • Research on vibration of a vehicle with a transversely mounted 4-cylinder engine was performed using a vector synthesis method, Data of the engine vibration for the vector synthesis method was obtained experimentally and the data was ODS-fitted to calculate vibration level on any engine location assuming that the engine is rigid body in the frequency range of interest. In order to derive the excitation force on the vehicle body, the displacements were converted from the acceleration of engine. The transfer functions from engine mounts to toe pan on the floor were obtained experimentally. The vibration level on the toe pan was predicted by multiplying the excitation force by the transfer function. The predicted vibration level was compared with experimental data and the result was reasonable. Using the developed method, analysis was made for the effect of body fixture conditions of the vehicle when testing the engine vibration and for the effect of the transfer functions when the engine is installed or when the engine is removed. Finally the degree of contribution for 12 transfer paths was calculated.

  • PDF

Prediction of Concrete Slab Acceleration and Floor Impact Noise Using Frequency Response Function (주파수 응답함수를 이용한 콘크리트 슬래브 가속도 및 바닥충격소음 예측)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.483-492
    • /
    • 2014
  • Uncomfortable feelings of occupants by indoor floor impact noise in a residential building are not accurately represented by the floor impact noise from a standard impact source. It is due to the characteristics of standard impact sources, which are different from the impact forces produced by occupants. It varies significantly by impact source, and it is not easy to be replicated for testing. As a result, the indoor floor impact noise under different acoustic conditions cannot be directly compared. Using frequency response function(FRF), which represents the input-output relationships of a dynamic system, it is possible to examine the characteristics of the system. Especially, FRF can predict the response of a linear dynamic system subjected to various excitation. To determine the relationship between impact force and the corresponding response of dynamic system in residential building, the acceleration response of a concrete slab and the floor impact noise in the living room, produced by bang-machine and rubber-ball excitation, were measured. The test results are compared to the estimates based on FRF and impact force spectrum.

Characteristics of fluctuating lift forces of a circular cylinder during generation of vortex excitation

  • Kim, Sangil;Sakamoto, Hiroshi
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.109-124
    • /
    • 2006
  • This paper describes the characteristics of the fluctuating lift forces when a circular cylinder vibrates in the cross-flow direction. The response characteristics on elastically supported the circular cylinder was first examined by a free-vibration test. Next, flow-induced vibrations obtained by the free-vibration test were reproduced by a forced-vibration test, and then the characteristics of the fluctuating lift forces, the work done by the fluctuating lift, the behavior of the rolling-up of the separated shear layers were investigated on the basis of the visualized flow patterns. The main findings were that (i) the fluctuating lift forces become considerably large than those of a stationary circular cylinder, (ii) negative pressure generates on the surface of the circular cylinder when the rolling-up of separated shear layer begins, (iii) the phase between the fluctuating lift force and the cylinder displacement changes abruptly as the reduced velocity $U_r$ increases, and (iv) whether the generating cross-flow vibration becomes divergent or convergent can be described based on the work done by the fluctuating lift force. Furthermore, it was found that the generation of cross-flow vibration can be perfectly suppressed when the small tripping rods are installed on the surface of the circular cylinder.

Forced Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 격자형 구조물의 강제진동 해석)

  • 문덕홍;최명수
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.949-956
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful method for structural analysis lately. However, it is necessary to use a large amount of computer memory and computational time because the FEM requires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For analyzing these structures on a personal computer, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient matrix which is related to force and displacement vector at each node. And we suggested TSCM for free vibration analysis of complex and large lattice type structures in the previous report. In this paper, we formulate forced vibration analysis algorithm for complex and large lattice type structures using extened TSCM. And we confirmed the validity of TSCM through computational results by the FEM and TSCM, and experimental results for lattice type structures with harmonic excitation.

  • PDF

Analysis of wave induced vibration of a typical very large floating-type offshore airport platform (초대형 부유식 해상공항의 파도에 의한 진동응답특성 해석)

  • 이현엽;전영기;신현경
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.10-16
    • /
    • 1996
  • The vibration due to progressive ocean waves is analyzed for a typical footing-type offshore airport platform. The platform is modelled as a spring-supported Euler beam and buoyancy change due to wave is considered as excitation force, under the assumption that the wave propagates without distortion by the structure. The results show that the natural frequencies of this structure are distributed very closely and are little affected by boundary conditions and that the response charateristics due to ocean waves are quite different according to the wave frequency. In this study, the wave frequencies are divided into three regions; the resonance region at which the response is governed by the resonance between the natural mode at the wave frequency and the corresponding modal component of the wave excitation force, the bending governed region at which the response is governed by the bending stiffness, and the spring (buoyancy) governed region at which the response is governed by the spring constant ahd therefore is same as the incident wave form.

  • PDF

Characteristics Comparison of PM Motor according to the Driving method (영구자석형 전동기의 구동방법에 따른 전자기적 특성 및 진동 소음 비교)

  • Hong, Jung-Pyo;Lee, Su-Jin;Kim, Do-Jin;Lee, Byeong-Hwa;Jang, Woo-Kyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.522-527
    • /
    • 2012
  • This paper presents a result of the mechanical noise and vibration analysis as well as the electrical characteristics analysis of the permanent magnet (PM) motor according to the driving method that is Brushless DC (BLDC) drive and Brushless AC (BLAC) drive. To do that, the characteristics of the PM motor, which have the same output power but different driving method, are investigated. At that time, the characteristics such as torque, torque ripple and flux density, and so on, are obtained by finite element analysis (FEA). Besides, noise and vibration are obtained by spectrum analysis. The magnetic noise is defined as noise generated from vibrations due to electromagnetic excitation force. In this paper, the electromagnetic excitation force is analyzed and design process of noise reduction is proposed. Finally, The validity of the analysis results is verified by test.

  • PDF