• 제목/요약/키워드: Excitation Moment

검색결과 104건 처리시간 0.022초

협대역 불규칙가진력을 받는 탄성진자계의 확률적 응답특성 (Stochastic Responses of a Spring-Pendulum System under Narrow Band Random Excitation)

  • 조덕상
    • 한국산업융합학회 논문집
    • /
    • 제4권2호
    • /
    • pp.133-139
    • /
    • 2001
  • The nonlinear response statistics of an spring-pendulum system with internal resonance under narrow band random excitation is investigated analytically- The center frequency of the filtered excitation is selected to be close to natural frequency of directly excited spring mode. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The nonlinear phenomena, such as jump and multiple solutions, under narrow band random excitation were found by Gaussian closure method.

  • PDF

디젤엔진에서 기진력 감소를 위한 크랭크 각의 최적설계 (Optimal Design of Crank Angles for Reducing the Excitation Forces in a Diesel Engine)

  • 박정근;정의봉;서영수
    • 한국소음진동공학회논문집
    • /
    • 제12권2호
    • /
    • pp.108-115
    • /
    • 2002
  • The excitation forces from the periodical firing pressure in cylinder and the rotating crank mechanism cause lots of vibration problems in diesel engines. In this Paper. the computational program for predicting the excitation force is developed and applied to 4-stroke In-line engines. The crank angle is also optimized to reduce the first and second order moment produced by engines. Compared to the conventional uniform crank angle, about 70 % of the first order horizontal and vertical moment can be reduced by re-designing the crank angle non-uniformly.

Dynamic response of post-tensioned rocking wall-moment frames under near-fault ground excitation

  • Feng, Ruoyu;Chen, Ying;Cui, Guozhi
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.243-251
    • /
    • 2018
  • The dynamic responses of a rocking wall-moment frame (RWMF) with a post-tensioned cable are investigated. The nonlinear equations of motions are developed, which can be categorized as a single-degree-of-freedom (SDOF) model. The model is validated through comparison of the rocking response of the rigid rocking wall (RRW) and displacement of the moment frame (MF) against that obtained from Finite Element analysis when subjected ground motion excitation. A comprehensive parametric analysis is carried out to determine the seismic performance factors of the RWMF systems under near-fault trigonometric pulse excitation. The horizontal displacement of the RWMF system is compared with that of MF structures without RRW, revealing the damping effect of the RRW. Frame displacement spectra excited by trigonometric pulses and recorded earthquake ground motions are constructed. The effects of pulse type, mass ratio, frame stiffness, and wall slenderness variations on the displacement spectra are presented. The paper shows that the coupling with a RRW has mixed results on suppressing the maximum displacement response of the frame.

4행정 기관의 기진력 감소를 위한 크랭크 각 설계 (Crank Angles Design to Reduce the Excitation Forces in 4-stroke Diesel Engine)

  • 서영수;박정근;정의봉
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 추계학술대회 논문집(Proceeding of the KOSME 2000 Autumn Annual Meeting)
    • /
    • pp.108-114
    • /
    • 2000
  • The excitation forces from the periodical firing pressure in cylinder and the rotating crank mechanism cause lots of vibration problems in diesel engine. In this paper, the theoretical formulas for excitation forces are introduced and computational program for the optimization of crank angle is also developed to reduce the free moments in diesel engine. The computational results of 4-stroke in-line engine are applied to verify the reliability of the program.

  • PDF

헬리컬기어-플레이트 시스템의 방사소음 (Radiated Noise of Helical Gear-plate System)

  • 박찬일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1042-1048
    • /
    • 2007
  • This work analytically investigated the radiated noise of a helical gear-housing system due to the excitation of helical gears. The helical gears were modeled as a 12-degree of freedom mass-spring-damper system; the shaft was modeled as a rod, a beam, and a torsional shaft; and the gear housing was modeled as a clamped circular plate with viscous damping. The modeling of this system used transfer matrices for helical gears, shafts, and bearings. Damping for both the bearings and the plate were obtained by modal testing. For the evaluation of noise, sound pressure from the plate due to the force and the moment in both radial and tangential directions was analytically derived by the Rayleigh integral. The analytical derivation and parameters from the experiment were applied to an analysis of noise for the two sets of helical gears with differing gear ratios. The analysis showed that the moment excitation in both helical gears contributed more to the noise of the plate than axial force excitation.

  • PDF

불규칙적으로 가진되는 동흡진기계의 비선형응답현상 (Nonlinear Response Phenomena of a Randomly Excited Vibration Absorber System)

  • 조덕상
    • 한국산업융합학회 논문집
    • /
    • 제3권2호
    • /
    • pp.141-147
    • /
    • 2000
  • The nonlinear response statistics of an autoparameteric system under broad-band random excitation is investigated. The specific system examined is a vibration absorber system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The jump phenomenon was found by Gaussian closure method under random excitation.

  • PDF

Estimation of excitation and reaction forces for offshore structures by neural networks

  • Elshafey, Ahmed A.;Haddara, M.R.;Marzouk, H.
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.1-15
    • /
    • 2011
  • Offshore structures are subjected to wind loads, wind generated wave excitations, and current forces. In this paper we focus on the wind generated wave excitations as the main source for the external forces on the structure. The main objective of the paper is to provide a tool for using deck acceleration measurements to predict the value of the force and moment acting on the offshore structure foundation. A change in these values can be used as an indicator of the health of the foundation. Two methods of analysis are used to determine the relationship between the force and moment acting on the foundation and deck acceleration. The first approach uses neural networks while the other uses a Fokker-Planck formulation. The Fokker-Plank approach was used to relate the variance of the excitation to the variance of the deck acceleration. The total virtual mass of the equivalent SDOF of the structure was also determined at different deck masses.

자기매계변수 연성을 갖는 응답의 통계적 특성 (Stochastic Response of a System with Autoparametric Coupling)

  • 조덕상;김영종
    • 한국전산구조공학회논문집
    • /
    • 제13권4호
    • /
    • pp.387-394
    • /
    • 2000
  • 본 연구에서는 광대역 불규칙가진력을 받는 자기매계변수계의 모드상호작용을 고찰하였다. 고찰대상 모델은 매우 흔한 추조물의 형태인 내부공진을 갖는 자기매계변수 동흡진기이다. Gaussian closure 방법에 의하여 계의 불규칙 응답을 나타내는 통적 모멘트방정식은 1차 및 2차 모멘트로 구성된 자율 상미분방적식으로 줄여진다. 계의 평형해와 평형해의 안정성측면에서 계의 응답이 조사되었다. 참고문헌 [18]과 [20]에서 보고된 발견한 감쇠가 안정성을 축소하기도 한다라는 이 효과는 본 연구에서 발견할 수 없었다. 또한 확정적 비선형계에 존재하는 포화현상은 발견되지 않았다.

  • PDF

Determination of critical excitation in seismic analysis of structures

  • Kamgar, Reza;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.875-891
    • /
    • 2015
  • Earthquake can occur anywhere in the world and it is essential to design important members in special structures based on maximum possible forces that can be produced in them under severe earthquake. In addition, since the earthquake is an accidental phenomena and there are no similar earthquakes, therefore the possibility of strong earthquakes should be taken into account in earthquake-resistant design of important structures. Based on this viewpoint, finding the critical acceleration which maximizes internal forces is an essential factor in structural design. This paper proposes critical excitation method to compute the critical acceleration in design of important members in special structures. These critical accelerations are computed so that the columns' internal shear force at the base of the structure at each time step is maximized under constraints on ground motion. Among computed critical accelerations (of each time step), the one which produces maximum internal shear force is selected. A numerical example presents to show the efficiency of critical excitation method in determining the maximum internal shear force and base moment under variety of constraints. The results show that these method can be used to compute the resonant earthquake which have large enough effective duration of earthquake strong motion (between 12.86 sec to 13.38 sec) and produce the internal shear force and base moment for specific column greater than the same value for selected earthquakes in constructing the critical excitation (for different cases about 2.78 to 1.29 times the San Fernando earthquake). Therefore, a group of them can be utilized in developing the response spectrum for design of special structures.

Hinged-clamped 보의 확률적 응답특성 (Stochastic Response of a Hinged-Clamped Beam)

  • 조덕상
    • 한국산업융합학회 논문집
    • /
    • 제3권1호
    • /
    • pp.43-51
    • /
    • 2000
  • The response statistics of a hinged-clamped beam under broad-band random excitation is investigated. The random excitation is applied at the nodal point of the second mode. By using Galerkin's method the governing equation is reduced to a system of nonautonomous nonlinear ordinary differential equations. A method based upon the Markov vector approach is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The case of two mode interaction is considered in order to compare it with the case of three mode interaction. The analytical results for two and three mode interactions are also compared with results obtained by Monte Carlo simulation.

  • PDF