• Title/Summary/Keyword: Exchangeable cations

Search Result 186, Processing Time 0.031 seconds

Measurement of Exchangeable Cations in Salt Accumulated Vinyl Greenhouse Soils (염류집적 비닐하우스 토양의 교환성 양이온 측정)

  • Chung, Jong-Bae;Lee, Yong-Se;Jeong, Byeong-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • BACKGROUND: Although 1 M $NH_4OAc$ (pH 7.0) is predominantly used as the extractant of exchangeable cations in agricultural soils, this method is unsuitable for extracting the cations in saline and calcareous soils. This study was performed to select a proper method to determine exchangeable cations in vinyl greenhouse soils. METHODS AND RESULTS: Exchangeable cations (Ca, Mg, K, Na) in saline vinyl greenhouse soils were determined after extraction with 1 M $NH_4OAc$ (pH 7.0 and 8.5) and 1 M alcoholic $NH_4Cl$ (pH 8.5). Sum of exchangeable cations of the soils extracted with 1 M $NH_4OAc$ at pH 7.0 was 1.9-2.5 times greater than soil cation exchange capaity determined at pH 7.0, even though soluble salts were pre-removed. A similar result was found when the cations were extracted with 1 M $NH_4OAc$ at pH 8.5. Those results are mostly due to the overestimation of exchangeable Ca and Mg, linked to a partial dissolution of sparingly soluble salts in $NH_4OAc$ solution. When extracted with 1 M alcoholic $NH_4Cl$ at pH 8.5, extractable Ca and Mg decreased significantly due to the lower solubility of Ca and Mg carbonates in the extractant. And the sum of exchangeable cations was very close to the corresponding exchange capacity of soils. CONCLUSION: Alcoholic $NH_4Cl$ (pH 8.5) is proposed as a reliable extractant in determination of exchangeable cations in saline vinyl greenhouse soils. And soluble salts should be removed prior to the extraction of exchangeable cations.

Determination of Exchangeable Cations in Soils Affected by Different Types of Salt Accumulation (염류집적 유형이 다른 토양의 교환성 양이온 측정)

  • Lee, Ye-Jin;Yun, Hong-Bae;Kim, Rog-Young;Lee, Jong-Sik;Song, Yo-Sung;Sung, Jwa-Kyung;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.135-142
    • /
    • 2012
  • Exchangeable cations are often overestimated especially in salt-affected soils due to the presence of high levels of soluble ions in soil solution. Thus, quantitative analysis of the soil exchangeable cation based on ammonium acetate extraction method {(Exch. Cation)$_{total}$} requires additional process to remove the free ions (pre-washing) in soil with distilled water or alcohol {(Exch. Cation)$_{pw}$} or subtraction of the soluble ion contents from the total exchangeable cations {(Exch. Cation)$_{ref}$}. In this research, we compared the three different methods for the determination of exchangeable cations in soils affected by different types of salt accumulation such as the soils from upland, plastic film house, and reclaimed tidal land. In upland soils, non-saline and non-sodic soils, the regular ammonium acetate extraction method did not have any problem to determine the content of exchangeable cations without any additional process such as the pre-washing method or the subtraction method. However, the contents of exchangeable cations in the salt-affected soils might be determined better with the pre-washing method for the plastic film house soils and with the subtraction method for the reclaimed tidal land soils containing high Na.

Investigation on Translocation of De-icing Salts influenced by the Intensity of Foliar Damage of Roadside Trees in Chung-ju City (충주시 가로수의 황변정도에 따른 토양 내 제설제 성분의 흡수이행성 평가)

  • Kim, Jae-Young;Kim, Won-Tae;Yoon, Young-Han;Ju, Jin-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Use of de-icing salts results in accumulation of high concentrations of ions on roadside soils and tree. The purpose of this study isto determine translocation of seasonal impact of exchangeable cations originating from de-icing salt on roadside surface soil-plant influenced by the intensity of foliar damage (NY = 0-25%, SY = 26-50%, CY = 51-75%) of trees. This paper investigated the concentration of four exchangeable cations ($K^+$, $Ca^{2+}$, $Na^+$, and $Mg^{2+}$) on the roadside surface soil. The tree (Ginko biloba) samples were collected from the Konkuk and Judeok intersections in Chung-ju city. The sequential extraction procedure was applied to 120 soil samples of the soilsurface and 30 tree samples. Four cation exchange ions were determined by ICP-OES. The content of four exchangeable cations present on roadside soil was found to be the lowest in NY but highest in CY from tree pits in the order of NY < SY < CY. Especially, the results were apparent during spring time compared to other seasons. Soil collected from tree pits had the highest concentration of $Ca^{2+}$ possibly due to a higher volume of traffic on those streetsresulting in splashing of more calcium chloride ($CaCl_2$). The analysis of three exchangeable cations ($K^+$, $Mg^{2+}$, and $Na^+$) in the tree leaves revealed higher levels than roadside surface soil when foliar damage ratio increased in the order of NY < SY < CY in summer. In addition, a strong positive linear relationship was observed between the concentration of exchangeable cations in soil and trees. It is hypothesized that the results of this study can be a valuable baseline for managing de-icing salt on roadside soil and trees, in order to mitigate the salt stress that can damage the roadside soil and trees.

Comparison of Multi-element Extraction Methods to Determine Available Phosphate and Exchangeable Cations of Korean Soils (토양의 유효태 인산과 치환성 양이온의 다성분동시추출 분석방법 비교)

  • Kim, Myung-Sook;Yang, Jae Eui;Kim, Yoo-hak;Yoon, Jung-Hui;Zhang, Yong-Seon;Kwak, Han-Gang;Ha, Sang-Keon;Hyun, Byung-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.192-200
    • /
    • 2009
  • Soil testing is one of the best management practices for sustainable agriculture. Recently, as increasing soil testing needs, simplification of soil analytical procedure has been required. To determine recommendable multi-element extractant, the soil testing results of available phosphate and exchangeable cations between the conventional methods (Lancaster and 1M $NH_4OAc) and multi-element extraction methods such as Mehlich III, Modified Morgan and Kelowna methods were compared. There were highly significant correlation between the conventional methods and multi-element extraction methods (Mehlich III, Modified Morgan and Kelowna) for available phosphate and exchangeable K, Ca, Mg and Na. The coefficients of determination ($R^2) between available phosphate extracted by Lancaster method and multielement extraction methods were in the order of Mehlich III ($0.979^{***}$) > Kelowna ($0.977^{***}$) > Modified(Mod.). Morgan ($0.553^{***}$). For exchangeable cations, there were highly significant correlations between 1M $NH_4OAc method and Mehlich III, Mod. Morgan and Kelowna. However, exchangeable K, Ca and Mg by Mehlich III method were more highly correlated with conventional method than other methods. Therefore, Mehlich III extraction method could be recommended as a single extractant for simultaneous measurement using ICP in the analysis of avaliable phosphate and exchangeable cations.

Comparison of Soil Chemical Properties in Greenhouse or Open Field Where Flower Crops were Cultivated from 2018 to 2020 (화훼작물이 재배된 온실 또는 노지재배지의 토양 화학성 비교)

  • Kwon, Hye Sook;Heo, Seong
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.675-685
    • /
    • 2022
  • A comparative analysis was performed on the soil chemical properties of greenhouse or open field where flower crops were grown from 2018 to 2020. The pH of greenhouse soils was kept slightly higher than the optimum range suggested by Rural Development Administration and that of open field soils was maintained within the optimum range for three years. The contents of organic matter (OM) were within the optimum range without significant change every year in both soils. Available phosphate (Av. P2O5) of greenhouse soils was the highest at 560 mg/kg in 2018, but it decreased every year and fell within the appropriate range in 2020. The concentration of Av. P2O5 in open field soils have fluctuated for three years, not showing a significant difference. Electrical conductivity (EC) of greenhouse soils was higher every year than the standard, 2.0 dS/m, but EC of open field soils remained below the standard. The contents of exchangeable cations were higher than the standard, showing significant differences among the years in greenhouse soils. In open field soils, other cations except exchangeable K+ were maintained higher than the optimal level and only Ca2+ showed a significant difference among the years. In Pearson correlation matrices, the value of exchangeable Ca2+ had a significantly positive correlation with exchangeable Mg2+ content at both greenhouse and open field soils. Based on principal component analysis, the soils of greenhouse were distributed within the range of high concentrations of Av. P2O5, EC and exchangeable cations, while the soils of open field were characterized by low contents of OM and exchangeable cations. Therefore, it is essential to lower the concentration of exchangeable cations in greenhouse soils. It is common for the soils of open field to have a low OM content, so that organic fertilizers should be more actively applied to the soils in open field.

A Study on the Acidification of Soils (토양의 산성화에 관한 연구)

  • Park,Byeong-Yun;Eo,Yun-U;Yang,So-Yeong;Jang,Sang-Mun;Kim,Jeong-Ho;Lee,Dong-Hun
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.305-310
    • /
    • 2001
  • pH($H_2O$), pH(KCI), CEC(cation exchange capacity), O.M.(organic matter) and exchangeable cations(K, Na, Ca, Mg) of paddy soil, upland soil and forest soil in Kumi city were investigated for the purpose of knowing soil acidification and the correlation between soil acidification and leaching of inorganic salts. The mean pH($H_2O$) values of paddy soil were 5.23(surface soil) and 5.69(subsoil) and 4.74(subsoil). The were 6.37(surface soil) and 6.11(subsoil), and those of forest soil were 4.67(surface soil) and 4.74(subsoil). The mean pH(KCl) values of paddy soil were 4.59(surface soil) and 4.98(subsoil) were 5.48(surface soil) and 5.04(subsoil), and those of forest soil were 3.82(surface soil) and 3.89(subsoil). The acidification of forest soil was more rapid than that of paddy soil and upland soil/ The total mean amounts of exchangeable cations(K, Na, Ca, Mg) in paddy soils were 6.14me/100g(surface soil) and 5.64me/100g(subsoil), and those in upland soils were 6.86me/100g(surface soil) and 6.65me/100g(subsoil), and those in forest soils were 4.06me/100g(surface soil) and 3.34me/100g(subsoil). The contents of inorganic salts in forest soil were much less than those of paddy soil and upland soil. The correlation coefficients(r) between pH($H_2O$) values and the total amounts of exchangeable cations in soils were $0.6635^{**}$(surface soil) and $0.6946^{**}$(subsoil), and those between pH(KCl) values and exchangeable cations in soils were 0.6629(surface soil) and $0.5675^{**}$(subsoil). The correlation between soil acidification and leaching of inorganic salts in soil was positively significant at 1% level.

  • PDF

An Investigation of Characteristics of Chinese Bellflower (Platycodon grandiflorum A.) Cultivated Soil

  • Choi, Jang Nam;Lee, Wang Hyu
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.660-666
    • /
    • 2018
  • In order to understand the characteristics of soil according to the cultivation environment of Chinese bellflower (Platycodon grandiflorum A.), soil chemical properties of 12 collected soil samples from 6 cultivated fields in Okcheon, Chungbuk province in August. 2017 were analyzed. The soil pH was distributed within the range of 4.61 to 5.25 at all cultivation years and E.C (Electric Conductivity) and T-N (Total Nitrogen) of the cultivation year were not significant. Available $P_2O_5$ was higher than the average for medicinal crops and P. grandiflorum in Korea and C.E.C (Cation Exchange Capacity) was inconsistent for each cultivation year. In particularly, it was validated that the content of exchangeable cations K, Ca, Ma, and Na in this experiment was similar to that of C.E.C according to the cultivation years, because C.E.C had a high correlation with the exchangeable cations. For the available $P_2O_5$, as affected by trans-planting, 5Y-NT-H (cultivated 5 years and non-transplanted) had 58 mg/kg, while 5Y-T-H (cultivated 5 years and transplanted) had 246 mg/kg. The soil pH was found to be lower (acidic) in diseased soils than healthy soils. E.C was confirmed to be was higher in diseased soils than healthy soils except for the one cultivated for 2 years. The contents of T-N and available $P_2O_5$ were higher in diseased soil except for the one cultivated for 5 years and 11 years. The exchangeable cation K and Na tended to be higher in diseased soils rather than that in healthy soils, and the exchangeable cation Ca and Mg contents were higher in healthy soils than in diseased soils. The C.E.C of the soil was lower than that of healthy soils in all of the years except for the one which was cultivated for 5 years (transplanted).

Evaluation of Field Application of Soil Conditioner and Planting Chrysanthemum zawadskii on the Roadside Soils Damaged by Deicing Agents

  • Yang, Ji;Lee, Jae-Man;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.625-636
    • /
    • 2020
  • Background and objects: Soil contamination caused by CaCl2 that is used to deice slippery roads in winter is now recognized as one of the major causes of damage of roadside plants. The aim of this study is to identify the salt mitigation effects of planting Chrysanthemum zawadskii and using a soil conditioner. Methods: The study was conducted at the site where Pinus densiflora f. multicaulis was planted on the roadside between Konkuk University Sageori and Danwol Samgeori located in Chungju-si. We classified the soils collected from the field experimental site according to the degree of the damage caused by deicing agents and divided the site into six blocks of three 80 × 80 cm plots replicated by treatment type. Three selected plots were treated with loess-balls on the soil surface (high salinity with loess-balls, medium salinity with loess-balls, low salinity with loess-balls) and three were left as an untreated control (H = high salinity, M = medium salinity, L = low salinity). The soil properties were measured including pH, EC and exchangeable cations as well as the growth of Chrysanthemum zawadskiia. Results: In the results of soil analysis, pH before planting Chrysanthemum zawadskiia was 6.39-6.74 and in September, five months after planting, the acidity was reduced to 5.43-5.89. Electrical conductivity (EC) was measured to be H > M > L with the higher degree of damage by deicing agents. The analysis of deicing exchangeable cations showed that the content of Ca2+ of soils were significantly correlated to deicing exchangeable cations (Ca2+, Na+, Mg2+) in the shoot part of Chrysanthemum zawadskii. The loess-ball treatment showed a lower content of deicing exchangeable cations than the treatment where Chrysanthemum zawadskiia was planted. Conclusion: In this study, the use of a new system made of loess-balls is proposed as a soil conditioner to protect soils from the adverse effects of road deicing salts. These data suggest that treatment of soil conditioners and planting Chrysanthemum zawadskiia are effective in mitigation of salt stress on the soils damaged by deicing agents.

Effects of the Chemical Properties of Field Soils on the Contents of Sugars and Saponin in Ginseng Roots (재배지토양의 화학성이 인삼근중의 당류 및 saponin 함량에 미치는 영향)

  • Kim, Dong-Cheol;Chang, Sang-Moon;Choi, Jyung
    • Applied Biological Chemistry
    • /
    • v.38 no.1
    • /
    • pp.72-77
    • /
    • 1995
  • The relationships between the soil chemical properties of ginseng fields and the contents of effective constituents in ginseng roots was investigated. The $NO_3-N$ contents in soils showed highly negative correlations with the contents of total sugar and reducing sugar in ginseng roots. The organic matter contents in soils showed positive correlations with the contents of sugar and ginoside in ginseng roots, while the contents of available phosphorus and exchangeable cations in soils showed highly negative correlations with the those in ginseng roots. For the Production of ginseng root of higher saponin contents, increase of the organic matter contents, and decrease of the contents of available phosphorus and exchangeable cations in soils were recommended.

  • PDF

Some Chemical Properties in Sandy Soil Horizons of Degraded Apple Orchards (사질계(砂質系) 노후화(老朽化) 사과원(園) 토양(土壤)의 층위별(層位別) 수종(數種) 화학성분(化學成分) 분포(分布) 특성(特性))

  • Kang, Shin-Jyung;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.215-219
    • /
    • 1994
  • This experiment was tried for finding out some soil chemical problems when new apple trees were replanted in old orchards. Soil samples were collected from the soil horizons in the old apple orchards cultivated over 40 years and reference soils. The non-cultivated reference soils were located near the old apple orchards and each of the soils was showed as the same pedon with each of the cultivated soils. The results were as follows : Soil pH showed a tendency to decrease in low horizons of the cultivated soils whereas increase in those of the uncultivated soils. As a comparision with each chemical component, the content of exchangeable Ca or total Mn was likely to be deficient in the cultivated soils. But all components except those were not like that. Total exchangeable cations in the cultivated soils were lower than in uncultivated soils. The pH in the cultivated soils showed very high positive correlation with total exchangeable cations. From those result, it was assumed that lower pH in lower horizon which would be originated from low content of total exchangeable cations, reacts as a factor for the deterioration of old apple orchard soil.

  • PDF