• 제목/요약/키워드: Exchangeable

검색결과 987건 처리시간 0.025초

경기도 골프장의 코스별 토양의 화학적 특성 (Chemical Characteristics of Golf Course Soils in Kyonggi Province)

  • 이인숙
    • 아시안잔디학회지
    • /
    • 제8권1호
    • /
    • pp.25-28
    • /
    • 1994
  • Chemical characteristics of soils were investigated in three golf courses of Kwanak, Gold and Korea Country Club with different open year. The soil samples were collected in tee, fairway and rough. There were ranges of 4.80~5.55 in pH, 3.68~5.39% inorganic matter, 0.10~0.25% in total nitrogen, 5.63~45.64ppm in available phosphorus, 0.80~1.7lme /l00g in exchangeable Ca, 0.09~0 42me /l00g in exchangeable Mg, 0.03~0.O9me /l00g in exchangeable Na, and 0.06~0.l4me /l00g in exchangeable K. The pH was significant with golf club(P<0.05) and positively correlated with exchangeable Ca and exchangeable Mg(P<0.0l).

  • PDF

한계령풀(Leontice microrhyncha) 개체군의 식생과 토양특성 (A Study on Vegetation Structure and Soil condition of Leontice microrhyncha Population)

  • 권재환;권혜진;송호경
    • 한국환경복원기술학회지
    • /
    • 제13권3호
    • /
    • pp.84-93
    • /
    • 2010
  • This study was carried out to analyze the vegetation properties, soil characteristics and ordination of Leontice microrhyncha population in South Korea. The Leontice microrhyncha population was classified into Quercus mongolica dominant population, Morus bombycis dominant population, Fraxinus mandshurica population and Leontice microrhyncha typical dominant. The Leontice microrhyncha population was located at an elevation of 633m to 1,336m in Korea. In the study sites, soil organic matter, total nitrogen, available phosphate, exchangeable potassium, exchangeable calcium, exchangeable magnesium, cation exchange capacity and soil pH were 8.40~10.58%, 0.42~0.61%, 14.15~25.07mg/kg, 0.44~0.59cmol$^+$/kg, 2.35~6.33cmol$^+$/kg, 0.35~0.98cmol$^+$/kg, 26.04~33.48cmol$^+$/kg and 4.69~5.32 respectively. Morus bombycis dominant population was found in the low elevation and gentle sloped area that has high percentage of phosphoric acid and less percentage of total nitrogen, exchangeable calcium, exchangeable magnesium than other dominant population. Fraxinus mandshurica dominant population and Leontice microrhyncha typical population were found in the comparatively high elevation area that has low percentage of phosphoric acid and high percentage of total nitrogen, exchangeable calcium, exchangeable magnesium. Quercus mongolica dominant population was found in the medium elevation area that has medium percentage of total nitrogen, exchangeable calcium, exchangeable magnesium.

우리나라 서남해안 간척지 및 간석지 토양의 화학적 특성 (I) - 중금속 오염물질의 형태별 함량 분포 - (Chemical Properties in the Soils of Reclaimed and Natural Tidelands of Southwest Coastal Area of Korea (I) - Distribution of Heavy Metal Fractions -)

  • 조재영;구자웅;손재권
    • 한국농공학회논문집
    • /
    • 제48권1호
    • /
    • pp.3-10
    • /
    • 2006
  • The chemical fractions of heavy metals were investigated in the soils of reclaimed and natural tidelands of southwest coastal area of Korea. The distribution pattern of each heavy metal in different fractions was in the order: 1) Cu : organic bound > organic complex > residual > exchangeable = water soluble. 2) Cr : residual > organic bound > organic complex > water soluble > exchangeable. 3) Pb : organic bound > residual > organic complex > water soluble > exchangeable. 4) Cd residual > organic bound > organic complex > water soluble = exchangeable. 5) Zn : organic bound > residual > organic complex > water soluble > exchangeable. The content of residual Zn showed positive correlation with organic matter content but organic bound Zn showed negative correlation with CEC. The content of residual and exchangeable Cd showed highly positive correlation with organic matter content but residual, organic bound, and exchangeable Cd showed negative correlations with CEC. Water soluble Pb showed positive correlation with CEC but organic bound Pb showed negative correlation with CEC.

Dynamics of Exchangeable Magnesium of Soil in Long-term Fertilization Experiment

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.641-647
    • /
    • 2015
  • Monitoring of soil fertility by long-term application of fertilizers is necessary to improve the fertility of soil and the productivity of crop. The objective of this study was conducted to investigate the changes of exchangeable Mg by continuous application of fertilizers from 1969 to 2014. The treatments were no fertilization (No fert.) and fertilization (NPK, NPK+C, NPK+S, and NPK+CS). The concentration of exchangeable Mg in No fert., NPK+C, and NPK+S treatments tended to increase from 1965 to 1975, but decrease gradually from 1976 to 1987, and increase again after 1988. Based on these, the changes of exchangeable Mg were divided into period I ('69 ~'75), period II ('76~'87), and period III ('88~'14). Especially, exchangeable Mg decreased in the period II. This was presumed that a significant amount of Mg from topsoil were leached into subsoil by break of plow pan and some of subsoil was incorporated into topsoil according to change of plowing depth by replacement of tillage machinery. It could be possible that exchangeable Mg in NPK, NPK+S, and NPK+CS was accumulated in the depth of 15~20 cm. For the period III, exchangeable Mg in No fert., NPK, NPK+C, NPK+S, and NPK+CS treatments increased at rates of 0.013, 0.018, 0.015, 0.023, and $0.024cmolckg^{-1}{\cdot}yr^{-1}$ respectively. Exchangeable Mg level in NPK+S was lower than the other treatments in the period I and period II, but higher than in the period III. This result was attributed to replacement of silicate fertilizer type from wollastonite (Mg 0.3%) to silicate fertilizer (Mg 3%). Also, exchangeable Mg level of No fert. treatment increased, which showed that Mg concentration of irrigated water had the greatest impact on Mg accumulation of soil. Recently, Mg level of irrigated water tended to increase, indicating that Mg concentration of water will affect greatly the concentration of exchangeable Mg of soil in the future. Like these, the changes of exchangeable Mg were greatly influenced by agricultural environment such as plowing depth, plow pan, content of fertilizer, and quality of irrigated water. Considering these agricultural environment, the proper management of soil is needed for the improvement of soil fertility and crop productivity.

소성 점토다공체 및 코코넛 피트를 혼합한 인공토양의 물리화학적 특성과 식물생육에 미치는 영향 (Physicochemical Properties of Artificial Soil Formulated by Blending Calcined Clay and Coconut Peat and its Effect on Plant Growth)

  • 허근영;강호철;김인혜;심경구
    • 한국조경학회지
    • /
    • 제30권5호
    • /
    • pp.107-115
    • /
    • 2002
  • This study was carried out to compare artificial soil formulated by blending calcined clay and coconut peat with perlite, then to evaluate this soil as a perlite substitute for use as an artificial planting medium. To achieve this, a determination of the physico-chemical properties and it's effect on plant growth were conducted by comparing those with large perlite grains and small grains. The results are summarized as follows: 1) The bulk density was 0.41g/㎤. This density was lower than that of field soil, but higher than that of large perlite grain(0.23g/㎤) and small grain(0.25g/㎤). The porosity, field capacity, and saturated hydraulic conductivity were 71.3%, 49.2%, and 3.8$\times$10-2cm/s, respectively. The air-permeability, water holding capacity, and drainage were better than or equal to that both large and small perlite grain. 2) It was near-neutral in reaction(pH=6.6). It had a high organic carbon content(65.8g/kg) and a low available phosphoric acid content(84.7mg/kg). It was similar to crop soil in cation exchange capacity(11.4cmol/kg). It had a low exchangeable calcium content(0.71cmol/kg), a low exchangeable magnesium content(0.68cmol/kg), a high exchangeable potassium content(2.54cmol/kg), and a high exchangeable sodium content(1.12cmol/kg). Except for the exchangeable potassium and sodium content, the chemical properties were better than or equal to both large and small grain perlite. The excessive exchangeable potassium or sodium content will inhibit plant growth. 3) In Experiment 1, the plant growth tended to be higher compared to that of large and small perlite gains. But in Experiment 2, it tended to be lower. This might be linked to the excessive exchangeable potassium or sodium content. 4) It could be considered as a renewable perlite substitute for greening of artificial soil. But, it would be necessary to leach the excessive exchangeable potassium or sodium to avoid the risk of inhibiting plant growth.

Pine Forest Soil Characteristics and Major Soil Impact Factors for Natural Regeneration

  • Kim, Min-Suk;Kim, Yong-Suk;Min, Hyun-Gi;Kim, Jeong-Gyu;Koo, Namin
    • 한국토양비료학회지
    • /
    • 제50권3호
    • /
    • pp.179-186
    • /
    • 2017
  • This study was conducted to identify characteristics of domestic pine forest soils and to elucidate major soil influencing factors for natural regeneration. We analyzed the physico-chemical characteristics of the soil samples collected from 23 pine forests and confirmed the similar results with the forest soil characteristics. Soil pH, organic matter content, total nitrogen, exchangeable Ca, silt content, and exchangeable Al were selected as the major soil factors among the exposed soils through 10 days of pine seedlings exposure and cultivation experiments and statistical analysis. Multiple regression analysis showed that soil pH had a positive effect on specific root length (SRL) of red pine seedlings and exchangeable Al was a significant factor affecting negative change in SRL. Taken together, the reduction of exchangeable Al by soil pH adjustment would be helpful for natural regeneration by restoring the forest and improving the fine root and root integrity of pine seedlings. Therefore, soil pH and exchangeable Al could be recommended as a major soil factor to be carefully considered in the monitoring and management of soil in pine forests that need to be renewed in the future.

치환성(置換性) Al 함량(含量)에 따른 석탄소요량(石炭所要量) 결정(決定)에 관(關)한 연구(硏究) (A study on determination of the lime requirement based on exchangeable aluminum content)

  • 류인수;조성진;육창수
    • 한국토양비료학회지
    • /
    • 제7권3호
    • /
    • pp.185-191
    • /
    • 1974
  • 치환성(置換性) Al 함량(含量)에 근거(根據)한 석회소요량결정방법(石灰所要量決定方法)을 우리나라 밭 토양(土壤)에 대(對)하여 검토(檢討)한 목적(目的)으로 실내(室內) 및 Pot시험(試驗)을 실시(實施)하였던 바 그 결과(結果)는 다음과 같다. 1. 공시(供試)된 반토양(土壤)의 pH는 5.0-5.4이었고 치환성(置換性) Al함량(含量)은 1.1~3.0me/100g 범위(範圍)에 있어 경작년도(耕作年度)가 오래된 토양(土壤)일수록 그 함량(含量)은 적었다. 2. 항온(恒溫) 실험결과(實驗結果)에서 광질토양(鑛質土壤)에 있어서는 치환성(置換性) Al의 100% 상당하는 당량(當量)의 중화석회량(中和石灰量) (토양별 소석회량(消石灰量) 범위(範圍)는 45~122kg/10a)으로 대부분의 Al이 중화(中和)되어 Al 중화비율(中和比率)은 평균(平均)95% 이었으나 화산회토양(火山灰土壤)에서는 200%의 중화석회량(中和石灰量)으로도 치환성(置換性) Al이 66.5% 만이 중화(中和)되어 더욱 많은 량(量)(100% 중화량(中和量)외 약(約) 3 배(倍))의 석회(石灰)를 요구(要究)하였다. 3. 광질토양(鑛質土壤)에서는 95%의 치환성(置換性) Al이 중화(中和)되었을 때 평균(平均) pH는 5.2에서 6.3으로 높아졌으며 화산회토양(火山灰土壤)에서는 치환성(置換性) Al의 200% 중화석회량가용(中和石灰量加用)으로 pH는 5.3에서 5.5로 변화(變化)되었을 뿐이었다. 4. 치환성(置換性) Al과 치환산도(置換酸度)($y_1$)의 두 측정치(測定値)(me 단위(單位)) 간(間)에는 r=0.99로서 고도(高度)의 상관관계(相關關係)가 있었으므로 치환산도(置換酸度)는 주로 치환성(置換性) Al에 기인(起因)된 것이라는 사실(事實)을 확인(確認)하였다. 5. 야산지토양(野山地土壤)인 송정통(松亭統) 표토(表土)에 콩을 재배(栽培)한 Pot시험(試驗)에서 인산흡수계수(燐酸吸收係數)의 5% 상당(相當)의 인산(燐酸)(32.1kg/10a)을 중과석(重過石)과 용성인비(熔成燐肥)로 시용(施用)했을 때 치환산도(置換酸度)를 기준한 최적석회소요량(最適石灰所要量)(me) 산출(算出)을 위(爲)한 Liming factor는 중과석(重過石) 1.132, 용성인비(熔成燐肥) 0.594이었고 작물생육(作物生育)을 위한 최적(最適) pH는 6.0 부근이었으며 최적(最適) Al의 중화비율(中和比率)은 80~90% 이었음을 보여 주었다.

  • PDF

염류집적 비닐하우스 토양의 교환성 양이온 측정 (Measurement of Exchangeable Cations in Salt Accumulated Vinyl Greenhouse Soils)

  • 정종배;이용세;정병룡
    • 한국환경농학회지
    • /
    • 제37권1호
    • /
    • pp.21-27
    • /
    • 2018
  • 가용성 및 난용성 염류가 집적된 비닐하우스 토양의 교환성 양이온을 가용성 염류의 사전 제거 처리 없이 pH 7.0의 1 M $NH_4OAc$ 용액으로 추출하여 측정할 경우 비교환성 양이온의 용출로 인해 특히 교환성 Ca과 Mg의 함량이 실제보다 훨씬 과다하게 측정될 수 있다. 본 연구의 결과, 노지 토양의 경우에는 1 M $NH_4OAc$(pH 7.0) 용액으로 추출하여 측정한 교환성 양이온 함량의 합은 pH 7.0에서 측정된 CEC를 초과하지 않았으나 비닐하우스 토양의 경우에는 가용성 염류를 사전에 제거하더라도 CEC의 1.9-2.5배 정도로 과다하게 측정되었다. 가용성 염류를 사전에 제거한 후 pH 8.5의 1 M alcoholic $NH_4Cl$ 용액으로 추출하여 측정한 비닐하우스 토양의 교환성 양이온의 합은 pH 7.0에서 측정된 CEC에 매우 근접하였다. 이와 같은 결과는 pH 8.5의 alcoholic $NH_4Cl$ 용액에서 Ca과 Mg의 탄산염을 포함한 토양 중의 난용성 염류의 용해가 억제되었기 때문이다. 따라서 가용성 염류를 사전에 제거하고 $NH_4OAc$ 용액 대신 alcoholic $NH_4Cl$ 용액으로 교환성 양이온을 추출 정량함으로써 비닐하우스 토양의 교환성 양이온을 보다 정확하게 측정할 수 있을 것으로 판단된다.

수계내 저질에 대한 구리 및 카드뮴의 분배 특성 (Characteristics of Copper and Cadmium Partitioning in Aquatic Sediment)

  • 이군자;박청길
    • 한국환경과학회지
    • /
    • 제1권2호
    • /
    • pp.71-79
    • /
    • 1992
  • 수계내 저질에 대한 구리 및 카드융의 분배 특 성을 검토하기 위하여 선택적 연속추출법에 의해 실험한 결과 다음과 같았다. 저질에 분배된 구리는 pH의 변화에 따라 carbo¬n nate 상과 exchangeable/adsorbed 상이 영향을 많이 받았으며 카드륨은 carbonate 상이 영향을 많이 받았다. 그리고 NTA와 EDTA가 함께 존재할 때 구리와 카로융 모두 carbonate 상과 결합한 것이 가장 많이 해리되어 수중으로 이동하였다. 저질과 결합한 금속량과 평형농도 사이의 구리와 카드륨의 총괄적인 분배계수는 구리가 8.361이었 으며 카드륨이 0.497이었다. 저질내 각 고형상에 분배된 크기를 분배계수로 나타내면 구리의 경우는 carbonate, organic matter, exchangeable/adsorbed, manganese oxides 그리고 iron oxides 차례로 컸으며, 카드뮴의 경우는 exchangeable/adsorbed, carbonate, manganese oxides, organic matter 그리고 iron oxides 차례로 컸다. organic matter 상은 구리와는 달리 카드륨에서는 분배에 크게 기여하지 않았다.

  • PDF

Long-term Variations of Chemical Properties in Controlled Horticultural Soils of Gyeongnam Province

  • Lee, Young-Han;Lee, Seong-Tae;Hong, Kang-Pyo;Lee, Sang-Dae;Kim, Je-Hong;Ok, Yong-Sik;Kim, Min-Keun;Kim, HyeRan
    • 한국토양비료학회지
    • /
    • 제46권5호
    • /
    • pp.308-312
    • /
    • 2013
  • The monitoring of chemical dynamic changes in controlled horticultural lands is very important for agricultural sustainability. Field monitoring was performed to evaluate the soil chemical properties of 200 controlled horticultural soil samples in Gyeongnam province every 4 years from 2000 to 2012. Soil chemical properties such as pH, amount of organic matter, available phosphate, nitrate nitrogen, and exchangeable potassium, calcium, magnesium, and sodium were analyzed. The amount of exchangeable calcium and soil pH were significantly higher in 2012 than in 2000. In 2012, the frequency distribution for values of pH, organic matter, available phosphate, and exchangeable potassium, calcium, and magnesium that were within the optimum range was 16.0%, 22.5%, 11.5%, 3.5%, 2.5%, and 5.0%, respectively. Especially, available phosphate and exchangeable calcium were excess level with portions of 76.0% and 96.5%, respectively. These results indicated that a balanced management of soil chemical properties can reduce the amount of fertilizer applied for sustainable agriculture in controlled horticultural lands.