• Title/Summary/Keyword: Excessive precipitation

Search Result 36, Processing Time 0.021 seconds

Characteristics of Gaeryangmerou Wine deacidified by Calcium Carbonate (탄산칼슘 처리에 의한 개량머루주의 감산 특성)

  • Kim, Chan-Woo;Jeon, Jin-A;Kang, Ji-Eun;Choi, Han-Seok;Yeo, Soo-Hwan;Jeong, Seok-Tae
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.26 no.6
    • /
    • pp.559-564
    • /
    • 2016
  • We investigated the effect of calcium carbonate on the quality of wine obtained from Gaeryangmerou (Vitis. spp.), grapes, which are commonly used in wine making in Korea. Alcoholic fermentation was carried out at $25^{\circ}C$, for 7 days in the presence of 0.1%, 0.2%, and 0.3% calcium carbonate. As calcium carbonate concentration increased, the pH of wine increased, while its total acid content and redness decreased. Calcium carbonate treatment during precipitation and aging is more effective than during fermentation. Concentrations of alcohol, total anthocyanin, polyphenol, and tannin showed no significant differences between controls and deacidified groups. Tartaric and malic acids were found to be the major acids in Gaeryangmerou wine. Calcium carbonate reduced total acidity by precipitating tartaric acid. In the sensory evaluation of the acidity, and overall acceptability, wine treated with 0.1% calcium carbonate was the best. Higher calcium carbonate concentration, was associated with greater reduction in total wine acidity. However, it is necessary to maintain the calcium carbonate concentration within 0.1% since excessive amounts of calcium carbonate can have a negative effect on wine quality.

Physiochemical Characteristics of Coastal Pseudo-Estuarine Environment Formed During the Summer Flood season in the South Coast of Korea (한국 남해 연안역에서 여름 홍수기에 형성된 연안 염하구 환경의 물리 -화학적 특성)

  • 임동일;엄인권;전수경;유재명;정회수
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 2003
  • In this study, we investigated the physiochemical characteristics of temporal estuarine environment formed during the summer flood season (consecutive rainy days with average 50 mm day$^{-1}$ precipitation) in the coastal area of South Sea of Korea. The freshwater from the Seomjin River was characterized by lower temperature, salinity and pH, and high concentrations of COD and nutrients. In the summer flood season, such peculiar Somejin-River freshwater was dispersed southward along the coast of Yeosubando-Dolsando-Geumodo, form-ing temporal estuarine environment (defined as "Coastal Pseudo-Estuary" in this study) throughout the entire study area (as far as 60 km from the Seomjin River mouth). Compared to the winter dry season, the DIN/DIP ratio was almost doubled (16-36) during the summer flood season. This excessive nitrate supply during the summer flood season was probably due to nitrogenous fertilizer. Distribution and behaviors of physiochemical factors in this coastal pseudo-estuarine environment were controlled not only by the runoff of the Seomjun River (physical mixing of river water with seawater) but also by the biogeochemical estuarine processes which are mostly similar to those of the river estuary.r estuary.

Experimental determination of design parameters for filtration trench using phosphorus removal granular materials (인 제거 입상소재를 적용한 여과수로 설계인자의 실험적 결정)

  • Jang, Yeoju;Lim, Hyunman;Jung, Jinhong;Ahn, Kwangho;Chang, Hyangyoun;Park, Nari;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • The algal blooms in stagnant streams and lakes have caused many problems. Excessive algae leads to disturbance of ecosystem and overload of water treatment processes. Therefore, phosphorus(P), source of algal blooms, should be controlled. In this study, a filtration trench has been developed to convert dissolved phosphorus into hydroxyapatite(HAP) so that it could be crystallized on the surface of 'phosphorus removal granular material'; and residual particulate phosphorus could be removed by additional precipitation and filtration. The front and rear parts of filtration trench consisted of 'phosphorus removal granular material contact bed' and 'limestone filtration bed', respectively. As a result of the column test using phosphorus removal granular material and limestone serially, $PO_4-P$ was removed more than 90% when EBCT(empty bed contact time) of the contact bed was over 20 minutes; and T-P represented 60% of removal efficiency when total EBCT was over 1.5 hours. The results of column tests to figure out the sedimentation characteristics showed that more than 90% of particulate phosphorus could be removed within 24 hours. It was necessary to optimize the filtration part in order to increase removal efficiency of T-P additionally. Also, it was confirmed through the simulation of Visual MINTEQ that most of particulate phosphorus in the column tests is the form of HAP. Based on the results of the study, it could be suggested that the design parameters are over 0.5 hour of EBCT for phosphorus removal granular material contact bed and over 1.5 hours of EBCT for limestone filtration bed.

Rice Cultivation and Demographi Development in Korea : 1429-1918 (조선시대(朝鮮時代) 도작농업(稻作農業)의 발전(發展)과 인구증가(人口增加))

  • Lee, Ho Chol
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.201-219
    • /
    • 1989
  • Rice culture in Korea has a long history ranging over two thousand years. In the agriculture economy of pre-mordern Korea, however, its importantce was not as great as generally assumed. In fact, rice culture reached full development only after the 1920s when the Japanese colonial government carried out its drive to increase rice production in the Korea peninsula. It was not until the mid-1930s that rice became the staple in Korean diet. This can be attributed to two factors : (1) a mountainous topography that provides little irrigated fields and (2) a climate characterized by droughts in spring and heavy precipitation in summer. The present paper attempts to answer some of these questions. Specifically it will focus on these : Did the development of rice culture actually result in population growth? What are the salient features of agricultural develdpment and population grow in traditional Korea? Does the case of Korea conform the prevailing generalization about the agriculture in East Asia? I have discussed the development of rice culture and population growth in the Chos$\breve{o}$n dynasty, focusing on the relation between the rapid spread of transplanting and the rapid growth of population from the seventeenth to the nineteenth century. Here are my conclusions. (1) The spread of transplanting and other technological innovationsc contributed to the rapid growth of population in this period. However, we should also note that the impact of rice culture on population growth was rather limited, for rice culture was not the mainstay of agricultural economy in pre-modern Korea. Indeed we should consider the influence of dry field cropsn population growth. Nevertheless, it is obvious that the proliferation of rice culture was a factor crucial to population growth and regional concentration. (2) How should we characterize the spread of rice culture in the whole period? Evidently rice culture spread from less then 20% of cultivated fields in the fifteenth century to about 36% of them in the early twentieth century. Although rice as a single crop outweighed other crops, rice culture was more then counter-balanced by dry field crops as a whole, due to Korea's unique climate and geography. Thus what we have here in not a typical case of competition between rice culture and day field culture. Besides, the spread of rice culture in the seventeenth and eighteenth centuries accomplished by technological innovations that overcame severe springtime drought, rather than extensive irrigation. Althougt irrigarion facilities did proliferate to some extent, this was achieved by local landlords and peasants rather than the state. This fact contradicts the classical thesis that the productivity of rice culture increased through the state management of irrigation and that this in turn determined the type of society. (3) We should further study other aspects of the transition from the stable population and production struture in the fifteenth and sixteenth centuries to the rapid population growth and excessive density of population thereafter. We should note that there were continuing efforts to reclaim the land in order to solve the severe shortage of land. Changes also took place in the agricultural production relations. The increase in land producrivity developed tenancy based on rent in kind, and this in turn increased the independence of tenants from their landlords. There were changes in family relations-such as the shift to primogeniture as an effort to prevent progressive division of property among multiplying offspring. The rapid population growth also produced a great mass of propertyless farm laborers. These changes had much to do with the disintegration of traditional social institutions and political structure toward the end of the Chos$\breve{o}$n dynasty.

  • PDF

Cultivation of Ginseng in Baengnyeongdo, the Northernmost Island of the Yellow Sea in South Korea (서해 최북단 섬 백령도의 인삼 재배 현황)

  • Cho, Dae-Hui
    • Journal of Ginseng Culture
    • /
    • v.4
    • /
    • pp.128-141
    • /
    • 2022
  • Baengnyeongdo Island, which belongs to Ongjin-gun, Incheon, is an island in the northernmost part of the West Sea in South Korea. Baengnyeong Island is the 15th largest island in Korea and covers an area of 51 km2. The Korea Ginseng Corporation (KGC) investigated the possibility of growing ginseng on Baengnyeong Island in 1996. In 1997, thanks to the support of cultivation costs from Ongjin-gun, the first ginseng seedbed was built on Baengnyeong Island. In 1999, the seedlings were transplanted to a permanent field under a contract with KGC. In 2003, the first six-year-old ginseng harvest was performed, and KGC purchased all production according to the contract. Since then, KGC has signed on to grow ginseng until 2012 and purchased six-year-old ginseng until the fall of 2016. Since 2014, the GimpoPaju Ginseng Agricultural Cooperative Association has signed a ginseng production contract. According to a survey of nine 6-year-old ginseng fields (total 5,961 units) on Baengnyeong Island, the top five with good growth had a survival rate of 42.6 to 68%, and the bottom four with poor growth had an extremely low survival rate of 11.1 to 21.3%. The four fields with low survival rates were where hot peppers were planted before ginseng cultivation. It is believed that the excess nitrogen remaining in the soil due to the treatment of compost or manure during pepper cultivation causes ginseng roots to rot. The average incidence of Alternaria blight was 8.6%. Six six-year-old ginseng gardens were low at 1.1 to 4.7%, while the other three were high at 16.7 to 20.9%. It is assumed that the reason for the low survival rate and high incidence of Alternaria blight is a rain-leaking shield. Farmers used rain-leaking shields because the precipitation on Baengnyeong Island was smaller than on land. One field showed 3% of leaves with yellowish brown spots, a symptom of physiological disturbance of the leaf, which is presumed to be due to the excessive presence of iron in the soil. To increase the production of ginseng on Baengnyeong Island, it is necessary to develop a suitable ginseng cultivation method for the island, such as strengthening the field management based on the results of a scientific study of soil, using rain-resistant shading, and installing drip irrigation facilities. I hope that ginseng will become a new driving force for the development of Baengnyeong Island, allowing ginseng products and food to thrive in the beautiful natural environment of the island.

Future Changes in Global Terrestrial Carbon Cycle under RCP Scenarios (RCP 시나리오에 따른 미래 전지구 육상탄소순환 변화 전망)

  • Lee, Cheol;Boo, Kyung-On;Hong, Jinkyu;Seong, Hyunmin;Heo, Tae-kyung;Seol, Kyung-Hee;Lee, Johan;Cho, ChunHo
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.303-315
    • /
    • 2014
  • Terrestrial ecosystem plays the important role as carbon sink in the global carbon cycle. Understanding of interactions of terrestrial carbon cycle with climate is important for better prediction of future climate change. In this paper, terrestrial carbon cycle is investigated by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (HadGEM2-CC) that considers vegetation dynamics and an interactive carbon cycle with climate. The simulation for future projection is based on the three (8.5/4.5/2.6) representative concentration pathways (RCPs) from 2006 to 2100 and compared with historical land carbon uptake from 1979 to 2005. Projected changes in ecological features such as production, respiration, net ecosystem exchange and climate condition show similar pattern in three RCPs, while the response amplitude in each RCPs are different. For all RCP scenarios, temperature and precipitation increase with rising of the atmospheric $CO_2$. Such climate conditions are favorable for vegetation growth and extension, causing future increase of terrestrial carbon uptakes in all RCPs. At the end of 21st century, the global average of gross and net primary productions and respiration increase in all RCPs and terrestrial ecosystem remains as carbon sink. This enhancement of land $CO_2$ uptake is attributed by the vegetated area expansion, increasing LAI, and early onset of growing season. After mid-21st century, temperature rising leads to excessive increase of soil respiration than net primary production and thus the terrestrial carbon uptake begins to fall since that time. Regionally the NEE average value of East-Asia ($90^{\circ}E-140^{\circ}E$, $20^{\circ}N{\sim}60^{\circ}N$) area is bigger than that of the same latitude band. In the end-$21^{st}$ the NEE mean values in East-Asia area are $-2.09PgC\;yr^{-1}$, $-1.12PgC\;yr^{-1}$, $-0.47PgC\;yr^{-1}$ and zonal mean NEEs of the same latitude region are $-1.12PgC\;yr^{-1}$, $-0.55PgC\;yr^{-1}$, $-0.17PgC\;yr^{-1}$ for RCP 8.5, 4.5, 2.6.