• 제목/요약/키워드: Excessive Vibration

검색결과 313건 처리시간 0.028초

공연하중에 의한 바닥진동 설계용 동하중계수 (Dynamic Load Factor for Floor Vibration due to Lively Concerts)

  • 홍갑표;윤광섭
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.721-728
    • /
    • 2002
  • 현대 구조물의 고강도화, 경량화에 따라 구조물의 질량과 감쇠가 줄어들고 있어, 구조물의 진동사용성 문제가 중요하게 부각되고 있다. 특히 율동진동은 공연장, 경기장, 댄스홀, 에어로빅 등과 같이 다수이 군중의 리듬에 맞춰 가진행위가 이루어지는 것으로서, 국내에서도 율동진동에 의한 구조물의 진동문제가 다수 보고되고 있으나 설계기준 미비로 설계단계에서의 대응이 이루어지지 못하고 있다. 그러므로 본 연구에서는 다수의 점핑행위가 예상되는 공연장의 진동설계를 위하여 실제 공연장을 대상으로 진동실험 및 계측을 통하여 동하중계수를 구해냈다. 진동 실험은 실험모드해석과 더불어, 가진진동수별, 율동참여자의 숫자에 따라 실시하였으며, 진동계측은 상시계측시스템을 설치하여 실제 공연시 가속도 응답을 계측하고 동하중계수를 구해내었다. 기존의 NBCC 규준에서는 공연시 2차 조화항까지 고려토록 되어 있으나 연구결과 3차 조화항까지 고려해야 되며, 동하중계수 역시 과소평가 되어 있는 것으로 나타났다.

음파진동 안마의자제품의 성능향상을 위한 판스프링의 효율적 설계 (Efficient Design of Plate Spring for Improving Performance of Sound Wave Vibration Massage Chair)

  • 김창겸;박수용;조은현;이동형
    • 산업경영시스템학회지
    • /
    • 제42권4호
    • /
    • pp.1-7
    • /
    • 2019
  • The customer of massage chair is expanding day by day from middle age to all ages. In 2018, the market size was 700 billion KRW, an increase of 30 times over 10 years. However, most related SMEs suffer from excessive competition by the market monopoly of some major companies. In this situation, in order for a related company to survive, it is necessary to steadily research and develop new products. Founded in 2009, company L produces massage chairs for health and relaxation of customers. L's products use a sound wave vibration module that is favorable for human body, unlike other products that use vibration motor type. However, frequent breakdowns of massage chair due to the vulnerability of plate (leaf) springs, which play an important role in sound wave vibration modules, made sap its competitiveness. In this paper, we propose a method to design desirable plate spring structure by sequentially experimenting with five different plate springs. The results of this study are expected to contribute to improve the quality of plate spring and the reliability of sound wave vibration module. In the future, it is necessary to find a way to use it in the development of foot massage or scalp management device as well as continuous research to find optimal plate spring structure through various analysis.

실험계획법을 이용한 대형 선박용 레이더 마스트의 공진회피 설계 (Design Enhancement to Avoid Radar Mast Resonance in Large Ship using Design of Experiments)

  • 박준형;이대용;양정욱;송창용
    • 한국해양공학회지
    • /
    • 제33권1호
    • /
    • pp.50-60
    • /
    • 2019
  • Recently, problems with excessive vibration of the radar masts of large bulk carriers and crude oil tankers have frequently been reported. This paper explores a design method to avoid the resonance of a radar mast installed on a large ship using various design of experiment (DOE) methods. A local vibration test was performed during an actual sea trial to determine the excitation sources of the vibration related to the resonant frequency of the radar mast. DOE methods such as the orthogonal array (OA) and Latin hypercube design (LHD) methods were used to analyze the Pareto effects on the radar mast vibration. In these DOE methods, the main vibration performances such as the natural frequency and weight of the radar mast were set as responses, while the shape and thickness of the main structural members of the radar mast were set as design factors. From the DOE-based Pareto effect results, we selected the significant structural members with the greatest influence on the vibration characteristics of the radar mast. Full factorial design (FFD) was applied to verify the Pareto effect results of the OA and LHD methods. The design of the main structural members of the radar mast to avoid resonance was reviewed, and a normal mode analysis was performed for each design using the finite element method. Based on the results of this normal mode analysis, we selected a design case that could avoid the resonance from the major excitation sources. In addition, a modal test was performed on the determined design to verify the normal mode analysis results.

Vibration control parameters investigation of the Mega-Sub Controlled Structure System (MSCSS)

  • Limazie, Toi;Zhang, Xun'an;Wang, Xianjie
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.225-237
    • /
    • 2013
  • Excessive vibrations induced by earthquake excitation and wind load are an obstacle in design and construction of tall and super tall buildings. An innovative vibration control structure system (Mega-Sub Controlled Structure System-MSCSS) was recently proposed to further improve humans comfort and their safeties during natural disasters. Preliminary investigations were performed using a two dimensional equivalent simplified model, composed by 3 mega-stories. In this paper, a more reasonable and realistic scaled model is design to investigate the dynamical characteristics and controlling performances of this structure when subjected to strong earthquake motion. The control parameters of the structure system, such as the modulated sub-structures disposition; the damping coefficient ratio (RC); the stiffness ratio (RD); the mass ratio of the mega-structure and sub-structure (RM) are investigated and their optimal values (matched values) are obtained. The MSCSS is also compared with the so-called Mega-Sub Structure (MSS) regarding their displacement and acceleration responses when subjected to the same load conditions. Through the nonlinear time history analysis, the effectiveness and the feasibility of the proposed mega-sub controlled structure system (MSCSS) is demonstrated in reducing the displacement and acceleration responses and also improving human comfort under earthquake loads.

Offset 베어링을 활용한 터보냉동기의 회전체동역학 설계 (Rotor Dynamic Design of the Centrifugal Chiller Using Offset Bearing)

  • 이창중;박용석;이준근
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.239-246
    • /
    • 2005
  • A rotor dynamic analysis is implemented to confirm the vibration stability of the high speed centrifugal chiller coupled with gear system. As the rotating speed of the centrifugal chiller under investigation is increased up to 17605rpm at the pinion rotating part, the bearing instability is getting higher and, furthermore, the rotor-bearing system might experience a few critical speed which lead to system failure due to the excessive vibration. In this study, considering the loading capacity and stability conditions, offset journal bearings are adopted for the pinion rotating system and general cylindrical bearings are used for motor part. From the modal analysis, the system is found to be stable as the critical damping ratio which shows the damping characteristics of the system are positive over all operating ranges, and in addition, the synchronous rotating frequency does not come across with any whirl natural frequency. From these results the authors confirm the vibration stability of the rotor-bearing system suggested in this study.

고속회전용 터보냉동기의 회전체 동역학 해석 (Rotor Dynamic Analysis of the High Speed Centrifugal Chiller)

  • 이준근;박용석
    • 한국산학기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.193-198
    • /
    • 2003
  • 증속기어장치를 이용한 고속회전 터보냉동기 시스템에 대한 회전체 동역학 설계 및 해석을 수행하였다. 특히 피동축의 회전수가 17,605 rpm가지 상승하여 회전체 안정성에 문제가 될 것으로 예측하여 특수베어링의 일종인 Offset베어링을 적용하였고, 구동축의 베어링은 단순베어링인 진원형 베어링을 적용하였다. 모드해석결과 회전체 시스템의 고유진동수가 어떠한 가진성분과 교차하지 않는 것이 확인 되었고, 전 운전영역에 걸쳐 감쇠값이 양의 값을 갖는 것을 알 수 있었으며 설계된 회전체 시스템이 정격운전 상태에서 충분한 안정성을 갖고 작동할 수 있음을 확인하였다.

  • PDF

고속철도 강교량의 진동특성 분석 (Dynamic Characteristics of High-speed Railway Steel Bridges)

  • 이정휘;김성일;곽종원;이필구;윤태양
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.632-637
    • /
    • 2007
  • The dynamic behavior of two steel bridges crossed by the Korean High Speed Train(KHST) has been investigated experimentally and the results are compared with the specification requirement of BRDM and other typical PSC Box bridge's responses. The investigated bridges are a 2-girder steel bridge of 1@40m span length(E-Won Bridge), 2@50m span length (Ji-Tan Bridge), and a PSC Box girder bridge of 2@40m span length (Yeon-Jae Bridge). A set of experimental tests were performed during operation of KHST, and a number of accelerometers, LVDTs and ring-type displacement transducers were utilized for measurement of three kinds of dynamic responses (acceleration, deflection, and end-rotation angle). Measured responses show that the vertical deflections and end-rotation angles of the three bridges are all satisfying the spec. requirement with large margin, but it was also found acceleration responses which are very close or exceed the limit value. Most of the excessive acceleration responses were found when the passing velocity of the KHST is close to the critical velocity ($V_{cr}$) which causes resonance. No noticeable differences of dynamic responses due to the different materials(steel or concrete) could be found within these experimental results.

자기유변유체를 이용한 반능동형 스퀴즈 필름 댐퍼의 해석 및 회전체 불균형 응답 제어 (Analysis of Magneto-rheological Fluid Based Semi-active Squeeze Film Damper and its Application to Unbalance Response Control of Rotor)

  • 김근주;이종원
    • 한국소음진동공학회논문집
    • /
    • 제15권3호
    • /
    • pp.354-363
    • /
    • 2005
  • Squeeze film dampers (SFDs) have been commonly used to effectively enhance the dynamic behavior of the rotating shaft supported by rolling element bearings. However, due to the recent trends of high operating speed, high load capacity and light weight in rotating machinery, it is becoming increasingly important to change the dynamic characteristics of rotating machines in operation so that the excessive vibrations, which may occurparticularly when passing through critical speeds or unstable regions, can be avoided. Semi-active type SFDs using magneto-rheological fluid (MR fluid), which responds to an applied magnetic field with a change in rheological behavior, are introduced in order to find its applications to rotating machinery as an effective device attenuating unbalance responses. In this paper, a semi-active SFD using MR fluid is designed, tested, and identified to investigate the capability of changing its dynamic properties such as damping and stiffness.In order to apply the MR-SFD to the vibration attenuation of a rotor, a systematic approach for determining the damper's optimal location is investigated, and also, a control algorithm that could improve the unbalance response characteristics of a flexible rotor is proposed and its control performance is validated with a numerical example.

실물실험을 통한 PC-Slab합성 판형교의 성능비교연구 (A Study on the Comparison of Performance of PC-Slab Composite Plate Girder from the Actual Sized Experiment)

  • 민경주;이성욱;김영국;우용근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1300-1309
    • /
    • 2010
  • In the railway bridges, steel plate girder types are preferred due the high stability. Nevertheless, it has been pointed out that this type of bridge has problems such as, structural damages in the rail and girder seat, noise problem due to impact at the rail joint and excessive vibration. This vibration and/or deflection are mainly because insufficient stiffness of steel plate type of bridge. To resolve these problems, PC-Slab composite plate girder type which has simple process and economic cost, is proposed in this study. The static and dynamic experiment is performed by using the production of actual sized PC-Slab and abandoned steel plate girder. The object of this experiment is to verify the fact that girder stiffness increase and structural safety. The result of the experiment is used to analyze the effect of performance improvement of PC composite plate girder type. Using this method, economic rail maintainers, girder stiffness increase, and also speed/ride improvement even for existing rail could be expected by dynamic performance improvement. Additionally noise due to impact, deflection and vibration caused from long rails can be reduced.

  • PDF

초전도베어링을 이용한 플라이훨 로터의 동특성 (Dynamic Behavior of a Flywheel Rotor System Using Superconductor Bearings)

  • 김영철;최상규;이준성;한영희;성태현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1071-1077
    • /
    • 2000
  • Recently, several attempts have been made to apply high Tc superconductor bearings of thrust type to flywheel energy storage system (FESS) throughout the world. Radial type superconductor bearings, however, have never been tried to the real FESS. KEPRI has developed its own radial type bearings and is now currently applying them to a FESS designed by KIMM, for the first time. In this paper preliminary test results of bearing performance and dynamic behavior of the flywheel rotor system mounted on them are presented. The dynamic properties, i.e, stiffness and damping, of the superconductor bearings were experimentally estimated using the static loading test as well as the impact test. The test revealed that stiffness value of the present superconductor bearings is about 67,700N/m and the damping value 29Ns/m. It was also found out that these bearings have some levitation drift problems due to excessive vibrations encountered while passing through the critical speeds. With recommend backup bearings to limit the vibration amplitudes of the rotor it is predicted that the flywheel rotor will show stable operations in the design speed range.

  • PDF