• Title/Summary/Keyword: Excessive Vibration

Search Result 313, Processing Time 0.03 seconds

Diagnosis of Excessive Vibration Signals of Two-Pole Generator Rotors in Balancing

  • Park, Jong-Po
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.590-596
    • /
    • 2000
  • Cause of excessive vibration with twice the rotational speed of a two-pole generator rotor for the fossil power plants was investigated. The two-pole generator rotor, treated as a typically asymmetric rotor in vibration analysis, produces asynchronous vibration with twice the rotational speed, sub-harmonic critical speeds, and potentially unstable operating zones due to its own inertia and/or stiffness asymmetry. This paper introduces a practical balancing procedure, and presents the results of the investigation on sources of the excessive vibration based on the experimental vibration data of the asymmetric two-pole rotor in balancing.

  • PDF

A Study on the Vibration Phenomena of the Duct-fan Systems in Fossil Fueled Boilers : Inlet Vortex Induced Excessive Vibration (화력 발전용 보일러 덕트-홴 시스템의 진동현상에 대한 연구 : 입구측 와류에 의한 과대진동 사례)

  • 김철홍;주영호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.194-201
    • /
    • 2003
  • During the operation, fatigue failures and cracks of duct plate due to excessive duct vibration occurred in a fan-duct system of fossil fueled boilers. We measured static pressure variation (pressure pulsation) in the outlet, and also measured vibration at the outlet duct of a centrifugal fan. It was found that strong pressure pulsation caused by the inlet vortex occurred in inlet vane of centrifugal fan in the middle range of vane opening. Thus, excessive duct vibration is caused by strong pressure pulsation. In this Paper, it is shown that the frequency and amplitude of pressure pulsation depend mainly on vane opening and are compared with duct vibration. Also, effective solution for reducing pressure pulsation and vibration are presented.

A Study on the Vibration Phenomena of the Duct-fan Systems in Fossil Fueled Boilers: Inlet Vortex Induced Excessive Vibration (화력 발전용 보일러 Duct/Fan 시스템의 진동현상에 대한 연구 : Inlet Vortex에 의한 과대진동 사례)

  • Kim, Cheol-Hong;Ju, Young-Ho;Byun, Hyung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.82-87
    • /
    • 2000
  • During the operation, fatigue failures and cracks of duct plate due to excessive duct vibration occurred in the fan-duct systems of fossil fueled boilers. We measured static pressure variation(pressure pulsation) in the outlet, and also measured vibration at the outlet duct of a centrifugal fan. It was found that strong pressure pulsation caused by the inlet vortex occurred in inlet vane of centrifugal fan in the middle range of vane opening. Thus, excessive duct vibration is caused by strong pressure pulsation. In this paper, it is shown that the frequency and amplitude of pressure pulsation depend mainly on vane opening and are compared with duct vibration. Also, effective solution for reducing pressure pulsation and vibration are presented.

  • PDF

Investigation on Excessive Vibration Signals of Two-Pole Generator Rotors in Balancing (발전기 양극 회전자 밸런싱에서의 이상 진동신호 분석)

  • 박종포;최성필;주영호
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.835-840
    • /
    • 1999
  • Cause of excessive vibration signals with twice the rotational speed of a 2-pole generator rotor in balancing for fossil power plants was investigated. The 2-pole generator rotor is treated as a typically asymmetric rotor in vibration analysis, and produces asynchronous vibration with twice the rotational speed for its own inertia and stiffness asymmetry. This paper introduces practical balancing procedure and experimental vibration data of the asymmetric 2-pole rotor in balancing, and presents the results of investigation into sources of the excessive vibration signals.

  • PDF

Excessive Vibration of the Fan-duct Systems in 500 MW Power Plant Boilers Due to Inlet Cone Vortex (Inlet Cone Vortex에 의한 500 MW급 발전용 보일러 홴-덕트 시스템의 과대진동)

  • Kim, Cheol Hong;Ju, Young Ho;Byun, Hyung Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.116-121
    • /
    • 2000
  • During the operation, fatigue failures and cracks of duct plate due to excessive duct vibration occurred in the fan-duct systems of fossil fueled boilers. We measured static pressure variation(pressure pulsation) in the outlet, and also measured vibration at the outlet duct of a centrifugal fan. It was found that strong pressure Pulsation caused by the inlet vortex occurred in inlet vane of centrifugal fan in the middle range of vane opening. Thus, excessive duct vibration is caused by strong pressure pulsation. In this paper, it is shown that the frequency and amplitude of pressure pulsation depend mainly on vane opening and are compared with duct vibration. Also, effective solution for reducing pressure pulsation and vibration are presented.

  • PDF

Countermeasure on High Vibration of Branch Pipe with Pressure Pulsation Transmitted from Main Steam Header (주증기 배관 헤더의 압력맥동에 대한 분기 배관의 고진동 대책)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.988-995
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve, and header generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 700 MW nuclear power plant. The exciting sources and response of the piping system are investigated by using on-site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3 Hz, 4.4 Hz and 6.6 Hz transmitted from main steam balance header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness and damping factor were installed to reduce excessive vibration.

Vibration Effect for Branch Pipe System due to Main Steam Header Pulsation (주증기 배관 헤더의 맥동이 분기 배관에 미치는 영향)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.780-785
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of a nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve or heather generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 7nn nuclear power plant. The exciting sources and response or the piping system are investigated by using on site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3Hz, 4.4Hz and 6.6Hz transferred from main steam header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness were installed to reduce excessive vibration.

  • PDF

Investigation on the Excessive Vibration of A Mixer Facility in A Water Purification Plant (정수장용 교반기 시설의 과진동 원인 분석)

  • Park, Jin-Ho;Lee, Jeong-Han;Kim, Bong-Soo;Kang, Mun-Hu;Kim, Dong-Soo;Joo, Yoon-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.312-316
    • /
    • 2002
  • Recently, mixers are being widely used in the water purification plant in order to increase the filtration efficiency. It has been found that a severe vibration was being felt on a upper structure of a mixer facility during steady state operation. The cause of the excessive vibration of the structure to which the mixer's shaft is supported has been evaluated through modal analysis on the shaft and vibration measurements during operation. The fundamental natural frequency of the mixer's shaft is found to be around 1.8 Hz and the main vibratory frequency around 30 Hz. It has been tuned out that the main vibratory frequency, 30 Hz is coincident with the fundamental holding frequency of the upper structure, and that the acceleration signal of the upper structure and the displacement signal of the mixer's shaft showed highly coherent to each other. Accordingly, it reveals that the main cause of the excessive vibration is due not to the mixer's vibration but to the natural frequency of the upper structure excited by flow turbulence.

  • PDF

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

보행하중을 받는 구조물의 효율적인 진동해석

  • 김기철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.159-166
    • /
    • 2000
  • Structures with a long span have a higher possibility of experiencing excessive vibration induced by human activities such as walking, running, jumping and dancing. These excessive vibration give occupants annoyance. The general method for the vibration analysis of structures subjected to walking loads is to apply a series of nodal loads with assigned time delays at the nodes. But this method has a limit in representing the walking loads. In this study, the equivalent nodal loads are introduced for an effective analysis of floor vibration induced by walking loads. And, walking loads with difference walking rate are measured and applied to the analytical model for numerical analysis.

  • PDF