• Title/Summary/Keyword: Excess risk

Search Result 280, Processing Time 0.028 seconds

Comparison on the Releasing Characteristics of Asbestos Fiber from Plant Slate Roof and House Slate Roof (공장과 주택 슬레이트지붕의 석면 노출특성 비교)

  • Jeong, Jae-won;Yoo, Eun-chul;Lee, Sang-Jonn;Park, Geun-Tae
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.927-937
    • /
    • 2015
  • This study was performed to identify and quantify the asbestos fibers released from two types of asbestos-cement slate roofs. One is a plant roof installed in 1987 which contained 15% chrysotile, and the other is a residential roof installed before 1983 which contained 12% chrysotile. The concentrations of asbestos fibers in air surrounding asbestos-cement slate roofs and in the falling water harvested from the same roofs on rainy days ranged from 0.0012 to 0.0018 f/mL and from 1,764 f/L to 10,584 f/L, respectively. The concentration of inorganic fibers in the soil around asbestos-cement slate roofs was from 217 to 348 f/g. With the above results, the excess lifetime cancer risk (ELCR) for the risk assessment of the asbestos fibers released from asbestos-cement slate based on US EPA IRIS (Integrated risk information system) model is within 5.5E-06 ~ 6.5E-06 levels which indicates that the levels do not exceed "the acceptable risk(1.0E-05)" recommended by WHO. The asbestos concentration in air, drained rainfall and soil around the plant slate roof was higher than that around residential slate roof, but the excess lifetime cancer risk (ELCR) from residential slate was higher than that from plant slate. This suggested that the enclose and encapsulation of residential roofs have priority in removal policy to minimize the exposure risk.

The Analysis of Trihalomethanes in Water Sample by Purge-and-Trap Gas Chromatograph/Mass Spectrometer and Risk Assessment (퍼지-트랩 기체크로마토그래프/질량분석계에 의한 물시료 중 Trihalomethanes의 분석 및 위해성 평가)

  • Kwak Sunyoung;Pyo Heesoo;Park Song-Ja
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • Recently, significant contamination problems by residual chemicals have occasionally been occurred from major rivers and drinking water in Korea. Therefore, the management for use of them and risk assessment should be more strictly performed. In this study, we have analyzed trihalomethanes in treated water samples taken from water plants located in the region of four major rivers (i.e. Han river, Geum river, Youngsan river and Nakdong river) in Korea for eight years (1997~2004). From the data, we could assess the excess cancer risk by calculating the chronic daily intakes (CDI) multiplied by individual oral slope factors, Q₁*, for the cancer suspected matters such as trihalomethanes, moreover the hazard index which is calculated by dividing the CDI by the acceptable daily reference dose (R/sub f/D) was determined for the risk assessment. As a result, in the case of 95 percentile excess cancer risk, it was shown that the excess cancer risk for dichlorobromomethane in the Nakdong river region is highest among the tested samples as 8.73 x 10/sup -6/. The 95 percentile total hazard index (the sum of individual hazard indices considering R/sub f/D), in addition, was below 1.0 for all samples, and therefore it was assessed that water samples taken from treatment plants of four major rivers are not harmful.

Clinical Risk Evaluation Using Dose Verification Program of Brachytherapy for Cervical Cancer (자궁경부암 근접치료 시 선량 검증 프로그램을 통한 임상적 위험성 평가)

  • Dong‑Jin, Kang;Young‑Joo, Shin;Jin-Kyu, Kang;Jae‑Yong, Jung;Woo-jin, Lee;Tae-Seong, Baek;Boram, Lee
    • Journal of radiological science and technology
    • /
    • v.45 no.6
    • /
    • pp.553-560
    • /
    • 2022
  • The purpose of this study is to evaluate the clinical risk according to the applicator heterogeneity, mislocation, and tissue heterogeneity correction through a dose verification program during brachytherapy of cervical cancer. We performed image processing with MATLAB on images acquired with CT simulator. The source was modeled and stochiometric calibration and Monte-Carlo algorithm were applied based on dwell time and location to calculate the dose, and the secondary cancer risk was evaluated in the dose verification program. The result calculated by correcting for applicator and tissue heterogeneity showed a maximum dose of about 25% higher. In the bladder, the difference in excess absolute risk according to the heterogeneity correction was not significant. In the rectum, the difference in excess absolute risk was lower than that calculated by correcting applicator and tissue heterogeneity compared to the water-based calculation. In the femur, the water-based calculation result was the lowest, and the result calculated by correcting the applicator and tissue heterogeneity was 10% higher. A maximum of 14% dose difference occurred when the applicator mislocation was 20 mm in the Z-axis. In a future study, it is expected that a system that can independently verify the treatment plan can be developed by automating the interface between the treatment planning system and the dose verification program.

Public Exposure to Natural Radiation and the Associated Increased Risk of Lung Cancer in the Betare-Oya Gold Mining Areas, Eastern Cameroon

  • Joseph Emmanuel Ndjana Nkoulou II;Louis Ngoa Engola;Guy Blanchard Dallou;Saidou;Daniel Bongue;Masahiro Hosoda;Moise Godefroy Kwato Njock;Shinji Tokonami
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.59-67
    • /
    • 2023
  • Background: This study aims to reevaluate natural radiation exposure, following up on our previous study conducted in 2019, and to assess the associated risk of lung cancer to the public residing in the gold mining areas of Betare-Oya, east Cameroon, and its vicinity. Materials and Methods: Gamma-ray spectra collected using a 7.62 cm×7.62 cm in NaI(Tl) scintillation spectrometer during a car-borne survey, in situ measurements and laboratory measurements performed in previous studies were used to determine the outdoor absorbed dose rate in air to evaluate the annual external dose inhaled by the public. For determining internal exposure, radon gas concentrations were measured and used to estimate the inhalation dose while considering the inhalation of radon and its decay products. Results and Discussion: The mean value of the laboratory-measured outdoor gamma dose rate was 47 nGy/hr, which agrees with our previous results (44 nGy/hr) recorded through direct measurements (in situ and car-borne survey). The resulting annual external dose (0.29±0.09 mSv/yr) obtained is similar to that of the previous study (0.33±0.03 mSv/yr). The total inhalation dose resulting from radon isotopes and their decay products ranged between 1.96 and 9.63 mSv/yr with an arithmetic mean of 3.95±1.65 mSv/yr. The resulting excess lung cancer risk was estimated; it ranged from 62 to 216 excess deaths per million persons per year (MPY), 81 to 243 excess deaths per MPY, or 135 excess deaths per MPY, based on whether risk factors reported by the U.S. Environmental Protection Agency, United Nations Scientific Committee on the effects of Atomic Radiation, or International Commission on Radiological Protection were used, respectively. These values are more than double the world average values reported by the same agencies. Conclusion: There is an elevated level of risk of lung cancer from indoor radon in locations close to the Betare-Oya gold mining region in east Cameroon. Therefore, educating the public on the harmful effects of radon exposure and considering some remedial actions for protection against radon and its progenies is necessary.

Benzene and Leukemia: The 0.1 ppm ACGIH Proposed Threshold Limit Value for Benzene

  • Infante Peter F.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.681-691
    • /
    • 1994
  • The American Conference of Governmental Industrial Hygienists (ACGIH) has proposed a threshold limit value (TLV) for benzene of 0.1 ppm. Individuals representing the American Petroleum Institute (API)and the Chemical Manufacturers Association (CMA) have argued that 1) the risk assessment by Rinsky .et al. which ACGIH partially relied upon for its proposed TLV overestimates the risk; however, at the exposures levels of interest - (e.g., 0.1 to 1.0 ppm) for establishing a benzene TLV, the Rinsky et al. assessment provides lower estimates of leukemia risk than most others; 2) ACGIH should not use the Dow study for direct observational evidence of leukemia risk associated with low-level benzene exposure because of confounding exposure; however, it is unlikely that confounding exposures played a role in the excess of leukemia demonstrated in the study, and the Dow cohort was exposed to an average benzene concentration of about 5.5 ppm benzene for 7.11 years (31:1.5 ppm-years), while some of the individuals in the study who died from leukemia were exposed to an average of only 1.0 ppm without the opportunity for highpeak exposures; 3) the Occupational Safety and Health Administration (OSHA) established an 8-hour time-weighted average (TWA) of 1.0 ppm in 1987, and there is no new evidence that would justify reducing the TWA below that level; however, the OSHA TWA of 1.0 ppm was based on economic feasibility and the level of excess risk remaining at 1.0 ppm, i.e., 10 excess leukemia deaths per 1000 workers over an occupational lifetime (45 years) according to OSHA's preferred estimate leaves behind I risk considered significant by OSHA. In addition, chromosomal studies among workers and in animals exposed to benzene indicate that low-level exposure, i.e., 1.0 ppm, is associated with elevated Cytogenetic damage. On the basis of adverse health effects data alone, in this author's opinion, it would be poor science and poor public health policy to establish a benzene TLV greater than 0.1 ppm.

  • PDF

Hazard and Risk Assessment and Cost and Benefit Analysis for Revising Permissible Exposure Limits in the Occupational Safety and Health Act of Korea (산업안전보건법 허용기준 대상물질의 허용기준 개정을 위한 유해성·위험성 평가 및 사회적 비용·편익 분석)

  • Kim, Ki Youn;Oh, Sung Eop;Hong, Mun Ki;Lee, Kwon Seob
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.134-145
    • /
    • 2015
  • Objectives: An objective of this study was to perform a risk assessment and social cost-benefit analysis for revising permissible exposure limits for seven substances: Nickel(Insoluble inorganic compounds), benzene, carbon disulfide, formaldehyde, cadmium(as compounds), trichloroethylene, touluene-2,4-diisocyanate. Materials and Methods: The research methods were divided into risk and hazard assessment and cost-benefit analysis. The risk and hazard assessment for the seven substances consists of four steps: An overview of GHS MSDS(1st), review of document of ACGIH's TLVs (2nd), comparison between international occupational exposure limits and domestic permissible exposure limits(3rd), and analysis of excess workplace and excess rate for occupational exposure limits based on previous work environment measurement data(4th). Total cost was estimated using cost of local exhaust ventilation, number of excess workplace and penalties for exceeding a permissible exposure limit. On the other hand, total benefit was calculated using the reduction rate of occupational disease, number of workplaces treating each substance and industrial accident compensation. Finally, the net benefit was calculated by subtracting total cost from total benefit. Results: All the substances investigated in this study were classified by CMR(Carcinogens, Mutagens or Reproductive toxicants) and their international occupational exposure limits were stricter than the domestic permissible exposure limits. As a result of excess rate analysis, trichloroethylene was the highest at 11%, whereas nickel was the lowest at 0.5%. The excess rates of all substances except for trichloroethylene were observed at less than 10%. Among the seven substances, the total cost was highest for trichloroethylene and lowest for carbon disulfide. The benefits for the seven substances were higher than costs estimated based on strengthening current permissible exposure limits. Thus, revising the permissible exposure limits of the seven substances was determined to be acceptable from a social perspective. Conclusions: The final revised permissible exposure limits suggested for the seven substances are as follows: $0.2mg/m^3$ for nickel, 0.5 ppm(TWA) and 2.5 ppm(STEL) for benzene, 1 ppm(TWA) for carbon disulfide, $0.01mg/m^3$(TWA) for cadmium, 10 ppm(TWA) and 25 ppm(STEL) for trichloroethylene, 0.3 ppm(TWA) for formaldehyde, and 0.005 ppm(TWA) and 0.02 ppm(STEL) for toluene diisocynate(isomers).

Insurance risk analysis of drug-resistant tuberculosis (내성결핵의 보험의학적 위험분석)

  • Lee, Sin-Hyung
    • The Journal of the Korean life insurance medical association
    • /
    • v.28 no.1_2
    • /
    • pp.15-18
    • /
    • 2009
  • Background: Recent emergence of drug-resistant tuberculosis such as multidrug-resistant tuberculosis(MDR-TB) or extensively drug-resistant tuberculosis(XDR-TB) has become important health care problems. It has also became grave issues for insurance industries in determining medical risks. We have therefore strived to analyze the comparative mortality rates for drug-resistant tuberculosis through utilization of results from previous articles. Methods: Comparative mortality was calculated from source articles using mortality analysis methods. Results: Mortality ratio of MDR-TB was estimate to 1200%, and excess death rate was 110 per 1,000. Comparative mortality between MDR-TB and XDR-TB by Korean $study^{(1)}$ were 1750, 382, 405, 443, 1025, and 357%, for each 10 months study intervals, respectively. Total mortality ratio was 594% and total excess death rate was 60 per 1,000person. It was determined that the risk of XDR-TB was much greater than MDR-TB. Discussion; Pending the development of a novel anti-tuberculosis drug, it would be prudent to steer clear insuring XDR-TB during underwriting phase due to high medical cost that it creates.

  • PDF

Lifestyle Factors Including Diet and Leukemia Development: a Case-Control Study from Mumbai, India

  • Balasubramaniam, Ganesh;Saoba, Sushama Laxman;Sarhade, Monika Nilesh;Kolekar, Suvarna Anand
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5657-5661
    • /
    • 2013
  • In India, among males, leukemia rates vary across the country. The present unmatched hospital-based case-control study conducted at Tata Memorial Hospital included subjects registered between the years 1997-99. There were 246 leukemia cases and 1,383 normal controls. Data on demographics, lifestyle, diet and occupation history were recorded. Cigarette (OR=2.1) and bidi smoking (OR=3.4) showed excess risk for leukemia. Odds ratios were 3.9 for fish-eaters, 0.40 for chilli eaters, 1.5 for milk drinkers and 0.60 for coffee drinkers, compared to non-drinkers/eaters. However, neither exposure to use of pesticides nor cotton dust showed any excess risk for leukemia.

Insurance risk analysis of kidney donors (신장 공여자의 보험의학적 위험분석)

  • Kim, Dong-Jin
    • The Journal of the Korean life insurance medical association
    • /
    • v.29 no.2
    • /
    • pp.18-21
    • /
    • 2010
  • Background: The kidney transplantation is increasing. The kidney donation of a living donor is more common in Korea than in other countries. Underwriters may encounter a case of a kidney donor. So we need to determine medical risk for a living kidney donor. Methods: Comparative mortality figures were calculated from a source article using mortality analysis methods. Results: Mortality Ratio of a living kidney donor was estimated to 106%, and Excess Death Rate was 0.89 per 1000. Discussion: A healthy kidney donor is quite within standard, even better in terms of medical risk.

  • PDF

Lifetime Risk Assessment of Lung Cancer Incidence for Nonsmokers in Japan Considering the Joint Effect of Radiation and Smoking Based on the Life Span Study of Atomic Bomb Survivors

  • Shimada, Kazumasa;Kai, Michiaki
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.83-97
    • /
    • 2021
  • Background: The lifetime risk of lung cancer incidence due to radiation for nonsmokers is overestimated because of the use of the average cancer baseline risk among a mixed population, including smokers. In recent years, the generalized multiplicative (GM)-excess relative risk (ERR) model has been developed in the life span study of atomic bomb survivors to consider the joint effect of radiation and smoking. Based on this background, this paper discusses the issues of radiation risk assessment considering smoking in two parts. Materials and Methods: In Part 1, we proposed a simple method of estimating the baseline risk for nonsmokers using current smoking data. We performed sensitivity analysis on baseline risk estimation to discuss the birth cohort effects. In Part 2, we applied the GM-ERR model for Japanese smokers to calculate lifetime attributable risk (LAR). We also performed a sensitivity analysis using other ERR models (e.g., simple additive (SA)-ERR model). Results and Discussion: In Part 1, the lifetime baseline risk from mixed population including smokers to nonsmokers decreased by 54% (44%-60%) for males and 24% (18%-29%) for females. In Part 2, comparison of LAR between SA- and GM-ERR models showed that if the radiation dose was ≤200 mGy or less, the difference between these ERR models was within the standard deviation of LAR due to the uncertainty of smoking information. Conclusion: The use of mixed population for baseline risk assessment overestimates the risk for lung cancer due to low-dose radiation exposure in Japanese males.