• Title/Summary/Keyword: Excess air

Search Result 357, Processing Time 0.111 seconds

Combustion Characteristics Using a S.I. Optically Acessible Engine with SCV (SCV를 장착학 가솔린 가시화엔진에서의 연소특성)

  • 정구섭;김형준;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2001
  • This study describes the combustion characteristics under various condition of air excess ratio and ignition timing in a 2-valve gasoline optically accessible engine with swirl control valve(SCV). It adapted three different types of SCA(open ration 72.5%, 78%, 89%) to strengthen a swirl flow. Pressure data were acquired using pressure sensor to investigate the effect of swirl flow on combustion, and from these pressure data, IMEP(indicated mean effective pressure) and MFB(mass fraction burnt)were calculated to explain burn rate and flame speed. From acquired flame images, inspected the flame propagation direction, flame area, and flame centroid, Flame propagation direction was shown different tendency between with/without SCV, and flame area with SCV was faster and larger than that of conventional engine. Finally, the representative flame image at each crank angle were acquired by PDF method to verify flame growth process. It is found that strengthened swirl flow is more beneficial for faster and stable combustion.

  • PDF

Performance of a Spark Ignition Engine Fueled with Methanol (메탄올 使용時 의 電氣점火機關 의 性能 에 關한 硏究)

  • 유병철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.2
    • /
    • pp.121-132
    • /
    • 1982
  • Engine torque, specific fuel consumption and MBT spark advance of a domestic automotive engine fueled with methanal-gasoline blends or straight methanal were studied under steady state condition and compared to those obtained with gasoline. The effects of adding methanal to gasoline on engine performance were studied with or without any carburetor modification. At first, the engine was operated without any modification. Next, the diameters of metering orifices in carburetor were modified to give the same excess air factor regardless of fuel type under each fixed engine operating condition. Finally, the diameters of metering orifices in carburetor were modified to give the same excess air factor for 15% mixture of methanal in gasoline by volume as for gasoline with standard metering orifices in carburetor. The effects of adding methanal to gasoline on engine torque, specific energy consumption and MBT spark advance can be explained on the basis of change in stoichiometry caused by the addition of methanal to gasoline.

Effect of Engine Specification and Driving Conditions on the Idle Emission Characteristics of SI Vehicles (Sl 자동차의 아이들 운전시 엔진 및 운행 조건에 따른 배출 가스 특성)

  • 류재욱;송정훈;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.70-76
    • /
    • 2002
  • This study focus on the effect of engine specification, driving conditions and the vehicle type on the idle emission characteristics. In order to obtain the characteristics of exhaust emissions, 1,260 vehicles of spark ignition engine are sampled and investigated. The exhaust emissions are measured with a CO/HC emission gas analyzer. The Sl engine vehicles are investigated by the effect of various exhaust emission parameters such as vehicle milage, engine specification, valve trains and fuels. The results show that the amount of CO and HC emission is not directly related to the driving mileage of the vehicle. However, the engine specifications and fuels such as the type of valve train and piston displacement have influence on the exhaust emissions. In addition, the LPG vehicle emits more CO and HC than gasoline vehicle. Based on the test results of SI vehicles, the influence of excess air and displacement volume are discussed.

Effects of Natural Gas Composition on Combustion Characteristics in a Gas Engine (쳔연가스 연료조성이 엔진 연소특성에 미치는 영향)

  • 이중성;유현석;윤영석;한정옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.32-41
    • /
    • 1999
  • Natural gas is an attractive fuel in view of environment benefits due to its flow carbon-to-hydrogen ratio. However, its compositions and properties are varied depending upon production regional groups. Therefore, study on the combustion characteristics of natural gas engines with a variety of compositions has been demanded for the efficient application of gas engines. This study aims to investigate the effects of gas composition on engine combustion characteristics. It was found that , by controlling an engine with fixed fuel nozzle area, power and heat release were subject to Wobbe Index. And at fixed excess air ratios, power and heat release were subject to low heating value of unit mixture . In addition, in case of constant nozzle area, combustion duration was found to be inversely proportional to CP(Combustion Potential), and the condition of fixed excess air ratios showed no change in combustion duration, regardless of CP.

  • PDF

Study on Characteristics of Catalytically Supported Thermal Combustion for Gas Turbine (가스터어빈용 촉매연소기를 위한 촉매-화염 복합 연소 특성연구)

  • Lee, Kyung-Wong;Chung, Nam-Jo;Ryu, In-Soo;Cho, Sung-June;Kang, Sung-Kyu;Chun, Kwang-Min;Song, Kwang-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.73-82
    • /
    • 2001
  • The characteristics of the catalytically supported thermal combustion with Pd-based catalyst using the bench scale high pressure combustor has been investigated up to 7 atm. The emission of $NO_{\chi}$ depends on the preheating temperature and the excess air ratio. Most $NO_{\chi}$ emission seems to come from the pre-burner for the preheating of the inlet gas. Decreasing excess air ratio in the inlet gas below 1.5 results in the stable catalytically supported thermal combustion in the post combustion region while the $NO_{\chi}$ emission increased up to 15 ppm. Further, the increase of the pressure shows the dramatic increase of the emission CO and THC. However, the $NO_{\chi}$ emission decreased slightly due to the lower combustion temperature at the high pressure.

  • PDF

Study on the Numerical Analysis for Microenvironments in Bed Mattress (침대 매트리스의 미환경을 위한 수치해석적 연구)

  • 지명국;배철환;신재호;정효민;추미선;정한식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.167-173
    • /
    • 2001
  • This paper represents the numerical analysis for microenvironments various temperature and humidity in bed mattress. He purpose of this study is for healthful bed mattress by controling a bacteria with a prediction of the vapor and temperature distributions in the bed mattress. The numerical model is one dimensional unsteady state and the governing equations were discretized by fully implicit scheme. The numerical results were compared with experimental data, and showed a good agreement with them. Specially, the excess-relative humidity shows a lower distribution near the surface of mattress, meaning that the optimum living condition for bacteria will be caused.

  • PDF

Development of a low NOx burner with honeycomb catalyst (저NOx형 하니컴 촉매버너의 개발)

  • Seo,Yong-Seok;Park, Byeong-Sik;Gang, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.822-829
    • /
    • 1997
  • A catalytic burner was studied which can be used as a heater operated in medium temperature. Noble metal catalysts (Pd/NiO) were used, which were supported on alumina wash coated honeycomb. The maximum heat-resisting temperature of the catalyst is about 900.deg. C. Combustion efficiency of the catalytic burner reached more than 99.5 % at the excess air ratio above 1.25.NOx emissions were lower than 1.0 ppm at all operation conditions. The operation condition for a stable catalytic combustion was obtained. It was dependent on the catalyst thickness. The 30 mm thick catalyst showed the widest stable catalytic combustion region. Stable catalytic combustion region of 30 mm thick catalyst was the operation condition of excess air ratio 1.25 - 1.75 and heat flux 7 - 14 kcal/h center dot cm$^{2}$.

The Effects of High Torque Starters on the Starting Characteristics of a Micro-hybrid Engine (고토크 스타터에 의한 마이크로 하이브리드 엔진의 시동특성 개선 효과)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.12-15
    • /
    • 2010
  • It is requested to shorten the starting duration for idle stop function equipped cars without harmful effects on the environment. Higher cranking speeds can be achieved with high torque starter. The object of this study is to develope the high torque starter and evaluate its effect on the exhaust emissions. The test was conducted on a 1.5 L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. Engine out emissions such as HC, CO, $CO_2$, and the excess air ratios, lambda were measured using MEXA-554JK. The result showed that a high torque starter, HTS-II shortened the starting duration and reduced engine out emissions of HC, CO and improved starting performance with larger excess air ratio than that of the original starter, Org. S and a high torque starter, HTS-I.

Emission characteristics of diesel engine by mixing LPG (디젤기관의 LPG 혼합에 의한 오염배출물 저감특성)

  • 장영준;전충환;이춘우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.44-52
    • /
    • 1993
  • In this study, the characteristics of decreasing exhaust gas of diesel engine was examined in dual fuel method by using commertial LPG for automotive. LPG was supplied to engine intake port by fumigation method and flow rate was controlled by using the needle valve. LPG supply ratios were 0, 20, 30% of total fuel amount to be supplied to engine by mass base. We investigated the effect of LPG supply ratio on exhaust gas concentrations related to excess air ratio and engine load at 1600, 1800, 2000 rpm. Soot concentration decreased about 30% in proportion to the increase of the LPG supply ratio. NOx concentration decreased in proportion to the increase of the LPG than diesel only and the increase rate was higher at low engine load. BSFC(Brake specific fuel consumption) was lower in proportion to the increase of the LPG supply ratio at high engine load and to the decrease of LPG supply ratio at low engine load.

  • PDF

An Experimental Study of Flow Behaviour in Underground Stairway Fire (지하계단 화재에서 유동에 대한 실험연구)

  • 정진용;홍기배;이재하;유홍선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.821-827
    • /
    • 2003
  • Reduced-scale experimental study was carried out on the heat flow behavior which flows under the sloped ceiling in underground fire. Temperature and flow velocity were measured to characterize the ceiling jet along the sloped stairway ceiling. The methanol fuel was used as a model fire source giving 2.2 and 3.4 kW, with changing the slope angle of stairway adopting of 15, 25, 35, and 45 deg. Based on the experimental data, excess temperature and velocity along the sloped stairway ceiling were examined which are usefully applicable to estimate the activating conditions of heat detector and sprinkler head mounted on the sloped ceiling. Excess temperature in upper exit of the sloped stairway was also examined to analyze the soffit which delays the smoke diffusion. The result shows that the activating conditions of heat detector and sprinkler in the sloped stairway ceiling have to be considered differently in a point of about 30 deg.