• Title/Summary/Keyword: Excess Acidity Method

Search Result 5, Processing Time 0.02 seconds

Study of Protonation Behaviour and Distribution Ratios of Hydroxamic Acids in Hydrochloric and Perchloric Acid Solutions Through Hammett Acidity Function, Bunnett-Olsen and Excess Acidity Method

  • Agarwal, Manisha;Singh, Priyanka;Pande, Rama
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.164-171
    • /
    • 2019
  • The protonation parameters, dissociation constants ($pK_{BH^+}$) of conjugate acid, slope values (m, ${\phi}$ and $m^*$) and correlation coefficients (r) of hydroxamic acids were determined by Hammett acidity function method, Bunnett-Olsen method and excess acidity method in hydrochloric and perchloric acid solutions. Effect of acid concentration on partition and percentage protonation was also studied. $pK_{BH^+}$ values show that hydroxamic acids do not behave as Hammett bases, but hydroxamic acids behave as weak bases in strong acidic solutions. The values of $pK_{BH^+}$ obtained through Bunnett-Olsen method and excess acidity method were compared with the Hammett acidity function. ChemAxon's MarvinSketch 6.1.5 software was also used for determining $pK_a$, pI and microspecies distribution (%) of hydroxamic acids with pH. Hydrogen donor and acceptor values and logD were also obtained. The results show that N-p-chlorophenyl-4-bromobenzohydroxamic acid has the highest $pK_a$ and lowest logD values. On the contrary, N-phenyl-3,5-dinitrobenzohydroxamic acid has lowest the $pK_a$ and highest logD values.

Basicity Constants (pKBH+) of 5-Substituted 2-Furaldehydes (5-치환 2-Furaldehyde류의 염기도 상수)

  • Lee, Jong-Pal;Im, Gwi-Taek;Lee, Yong-Hui;Gu, In-Seon;Ryu, Jun-Ha
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.4
    • /
    • pp.323-330
    • /
    • 2002
  • The protonation equilibrium of 5-substituted 2-furaldehydes is investigated spectrophotometrically in aqueous sulfuric acid at $25^{\circ}C$ and the basicity constants(p$K_{BH+}$) of the substrates is calculated by means of the excess acidity method. The basicity constant of 5-metyl-2-furaldehyde having electron donating group is larger than that of 5- nitro-2-furaldehyde having electron withdrawing group. Difference between the basicity constants(p$K_{BH+}$) of these two compounds was about 3.25 pK unit. The m value which is the degree of solvation of the protonated substrate is similar to that of acetophenone having same protonation site. The dependence of p$K_{BH+}$ on m value shows good linear cor-relation.

Selection of koji and yeast strain for improvement of Choungju quality (청주의 주질 개선을 위한 국 및 효모의 선정과 그 발효 특성)

  • Shin, Cheol-Seung;Park, Yoon-Joong;Lee, Suk-Kun
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.9-15
    • /
    • 1996
  • To improve the quality of Choungju. a kind of rice wine, two different types of koji were prepared and compared : one from wheat bran with Aspergillus usamii mut. shirousami Y-79 and the other from rice with A. oryzae, and yeast strains from cereal wine mashes were newly isolated and applied for the brewing method. Levels of the related enzymes such as glucoamylase, ${\alpha}-amylase$ and acid protease in the wheat bran koji were higher than those in the rice koji, whereas vice versa in the case of acid carboxypeptidase. An amount of $2{\sim}3%$ wheat bran koji to the weight of total rice was adequate for saccharification of the mash and resulted in improved duality of the fermented mash, accompanied by decrease in koji ordor and amino acidity. When the solution of wheat bran koji and the isolated yeast strains were employed, the better Choungju taste was obtained in comparison with those fermented with Japanese sake yeasts, the strain K-7 and 9, due to the lower content of organic acids especially succinic acid. The amino acidity of the fermented mash was able to be controlled to some extent, when the rico types of koji and the isolated strains were employed, by changing the ratio of the two koji types. However, the application of the rice koji with the isolated strains was not desirable for the brewing process because organic acids were produced in excess and ethanol fermentation was retarded.

  • PDF

A Study on the Treatment of Dyeing Wastewater Using TiO2/UV (TiO2/UV 산화기술을 이용한 염색폐수처리에 관한 연구)

  • Kim, Jong-kyu;Chung, Ho-jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.392-400
    • /
    • 2004
  • This research uses the $TiO_2$/UV process to verify the most suitable condition and possibility to dispose dyeing wastewater that contains pigment and a large amount of pollutants. For this, this research has enforced experiments that compare photo adsorption, photolysis, and photo catalyst oxidation reaction, and also evaluated and analyzed the change of pH and $TiO_2$ dosage, irradiation rates of ultraviolet rays and the dosage change and injection method of $H_2O_2$. According to the results of the dyeing wastewater experiment of storehouse catalyst that uses the new form of $TiO_2$, the photo catalyst oxidation reaction proved to be more effective than photo adsorption and photolysis; 35%, 21% in the case of $TCOD_{cr}$ and 39%, 28% in the case of chromaticity. Taking into consideration the reaction time, amount of photo catalyst reaction and irradiation amount of ultraviolet rays, the decomposition efficiency of pH change proved to be most effective at pH 4. On the whole, the acidity area proved to be effective in dyeing water exclusion than neutral and alkalinity areas. Having evaluated the influence of $TiO_2$ dosage, not only does the decomposition efficiency continuously improve as the $TiO_2$ dosage increases but the shielding effect does not occur also when the $TiO_2$ is at a fixed state. The influence of ultraviolet irradiation amount concluded in the result that as the ultraviolet irradiation amount increases the decomposition efficiency continually increased, but in the case of chromaticity when the irradiation amount was higher than 37.8mW/cm2 the removal efficiency is slowed remarkably. The influence of $H_2O_2$ dosage evaluation reached the results that although the decomposition efficiency increases with the increase of $H_2O_2$ dosage, when above 150mg (total dosage: 1200mg) $H_2O_2$ consumes OH radical itself and reduces the decomposition efficiency. Also in the case of the $H_2O_2$ injection method rather than injecting in the whole amount of $H_2O_2$ (1200mg) needed at the beginning all at once, injecting divided quantities of $H_2O_2$ whenever the electric current density falls below 10mgfl reduces the wases of OH radical due to an excess of $H_2O_2$ and in tum heightens the decomposition efficiency.

The Potential Acid Sulfate Soils Criteria by the Relation between Total-Sulfur and Net Acid Generation (전황함량과 순산발생능력의 상관관계를 통한 잠재특이산성토양 기준 설정)

  • Moon, Yonghee;Zhang, Yong-Seon;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Park, Chan-Won;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.904-909
    • /
    • 2012
  • Acid sulfate soil (ASS) and potential acid sulfate soil (PASS) are distribution in worldwide and originate from sedimentary process, volcanic activity, or metamorphism and are problematic in agriculture and environmental due to their present and potential acidity developed by the oxidation. The PASS was defined as soil materials that had sulfidic layer more than 20 cm thick within 4 m of the soil profile and contained more than 0.15% of total-sulfur (T-S). A tentative interpretative soil classification system was proposed weak potential acid sulfate (T-S, 0.15-0.5%), moderate potential acid sulfate (T-S, 0.5-0.75%) and strong potential acid sulfate (T-S, more than 0.75%). PASS due to excess of pyrite over soil neutralizing capacity are formed. It provides no information on the kinetic rates of acid generation or neutralization; therefore, the test procedures used in acid base account (ABA) are referred to as static procedures. The net acid generation (NAG) test is a direct method to measure the ability of the sample to produce acid through sulfide oxidation and also provides and indication. The NAG test can evaluated easily whether the soils is PASS. The samples are mixed sandy loam and the PAS from the hydrothermal altered andesite (1:3, 1:8, 1:16, 1:20, 1:40, 1:80 and 1:200 ratios) in this study. We could find out that the NAG pH of the soil containing 0.75% of T-S was 2.5, and that of the soil has 0.15% of T-S was 3.8. NAG pH test can be proposed as soil classification criteria for the potential acid sulfate soils. The strong type has NAG pH of 2.5, the moderate one has NAG pH of 3.0, and the weak one has NAG pH of 3.5.