• Title/Summary/Keyword: Excavators

Search Result 107, Processing Time 0.029 seconds

Blast Design for Controlled Augmentation of Muck Pile Throw and Drop (발파석의 비산과 낙하를 조절하기 위한 발파 설계)

  • Rai, Piyush;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.360-368
    • /
    • 2010
  • The paper presents a case study from a surface mine where the controlled augmentation of throw and drop of the blasted muck piles was warranted to spread the muck piles on the lower berm of the bench. While the augmentation of throw increased the lateral spread and the looseness of the broken muck, the augmentation of drop significantly lowered the muck pile height for easy excavation by the excavators. In this light, the present paper highlights and discusses some pertinent changes in the blast design parameters for such specialized application of cast blasting in a surface mine, where a sandstone bench, with average height of 22-24 m was to be made amenable for excavation by 10 m3 rope shovels, which possessed maximum digging capability of up to 14 m. The results of tailoring the blast design parameters for augmentation of throw and drop are compared with the baseline blasts which were earlier practiced on the same bench by dividing the full height of the bench in 2-slices; upper slice (10-14 m high) and lower slice (12-15 m high). Results of fragment size, its distribution and total cycle time of excavator (shovel) are presented, and discussed.

Current Status of Rock Cutting Technique Using Undercutting Concept (언더커팅 개념을 적용한 암반절삭기술의 현황 분석)

  • Jeong, Hoyoung;Choi, Seungbeom;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.148-156
    • /
    • 2019
  • In urban area, the use of mechanical excavators (e.g., TBM and roadheader) has been increasing in construction of tunnelling and underground space. The undercutting technology, which is modified from the conventional rock-cutting concept, has been developed by advanced countries. Therefore, research on the latest technology of mechanical excavation is required, and keeping carrying out research on conventional mechanical tunneling methods at the same time. In this study, as a fundamental study of the undercutting technique, the principle and concept of the undercutting were introduced, as well as the current status of the research of advanced countries. The undercutting is applicable as a full-face excavation method for the tunnels and underground spaces, as well as an auxiliary(partial-face excavation) method for extension of the existing tunnels.

Prediction Model for Specific Cutting Energy of Pick Cutters Based on Gene Expression Programming and Particle Swarm Optimization (유전자 프로그래밍과 개체군집최적화를 이용한 픽 커터의 절삭비에너지 예측모델)

  • Hojjati, Shahabedin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.651-669
    • /
    • 2018
  • This study suggests the prediction model to estimate the specific energy of a pick cutter using a gene expression programming (GEP) and particle swarm optimization (PSO). Estimating the performance of mechanical excavators is of crucial importance in early design stage of tunnelling projects, and the specific energy (SE) based approach serves as a standard performance prediction procedure that is applicable to all excavation machines. The purpose of this research, is to investigate the relationship between UCS and BTS, penetration depth, cut spacing, and SE. A total of 46 full-scale linear cutting test results using pick cutters and different values of depth of cut and cut spacing on various rock types was collected from the previous study for the analysis. The Mean Squared Error (MSE) associated with the conventional Multiple Linear Regression (MLR) method is more than two times larger than the MSE generated by GEP-PSO algorithm. The $R^2$ value associated with the GEP-PSO algorithm, is about 0.13 higher than the $R^2$ associated with MLR.

Tribology Performance Analysis by Surface Patterns of PLA Printing Samples Using 3-body Abrasion Tester (모래 3체 마모시험 장비(3-body abrasion tester)를 이용한 PLA프린팅 표면의 형상별 트라이볼로지 성능 분석)

  • Yong Seok Choi;Kyeongryeol Park;Seongmin Kang;Unseong Kim;Kyungeun Jeong;Young Jin Park;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.250-255
    • /
    • 2023
  • This study applies various surface patterns to minimize material loss in construction equipment that is subject to severe wear due to sand, such as the wear-resistant steel plates of dump trucks or the teeth of excavators. The relationship between surface morphology and wear behavior is investigated using PLA+ polymer to observe the effect of the surface pattern. Five types of samples - smooth, concave, convex, wavy concave, and wavy convex designs - are created using a 3D printer. A wear experiment is conducted for a duration of 3 h using 6.5 kg of abrasive particles. The mass loss of the samples after the experiment is measured to assess the extent of wear. Additionally, the surface morphology of the samples before and after the experiment is analyzed using SEM and confocal microscopy. The study results reveal that the smooth design exhibits the highest wear loss, whereas the concave and wavy concave designs show relatively lower wear loss. The convex and wavy convex designs exhibit varying contact areas with the abrasive particles depending on the surface pattern, resulting in different levels of wear. Furthermore, a comparison between the experimental results and DEM simulations confirms the observed wear trends. This study reveals the relationship between wear damage according to surface pattern shape and is expected to be of substantial help in the analysis of wear and tear on agricultural and heavy equipment.

Formalization of Productivity Metrics for Equipment in Multi-sectioned Road Construction Projects (다(多)공구 도로 공사 현장 장비들의 운영 실태 파악을 위한 생산성 지표 정립에 관한 연구)

  • Kim, Hong-Yeul;Koo, Bon-Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.100-109
    • /
    • 2012
  • Large road construction projects are typically partitioned into sections that are then contracted individually to contractors. Each section requires using similar heavy equipment including excavators, dump trucks and pavers, which constitute the highest cost. Normally the equipment is not shared between them, as each contractor wishes to have their equipment readily available. However, such practices result in very low utilization of these equipment. The goal of this research is to develop a programmatic resource sharing system in which contractors can share equipment depending on the changing needs of a multi-sectioned road project. This paper introduces the results of a survey performed to investigate how contractors currently manage the supply and demand of equipment and the equipment that are practical for sharing across a project. More importantly, the paper describes a set of metrics (DPR, nDPR, SDI) needed to quantify the amount of supply/demand variance occurring in each section. The metrics were used on an actual road construction project, and the results show that each section suffers from an imbalance between its monthly planned and actual utilization of equipment. The results also indicate that the sharing of the equipment can lead to potentially large savings as equipment requirements can be met within a project as to short leasing from outside vendors.

A Multi-agent based Cooperation System for an Intelligent Earthwork (지능형 토공을 위한 멀티에이전트 기반 협업시스템)

  • Kim, Sung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1609-1623
    • /
    • 2014
  • A number of studies have been conducted recently regarding the development of automation systems for the construction sector. Much of this attention has focused on earthwork because it is highly dependent on construction machines and is regarded as being basic for the construction of buildings and civil works. For example, technologies are being developed in order to enable earthwork planning based on construction site models that are constructed by automatic systems and to enable construction equipment to perform the work based on the plan and the environment. There are many problems that need to be solved in order to enable the use of automatic earthwork systems in construction sites. For example, technologies are needed for enabling collaborations between similar and different kinds of construction equipment. This study aims to develop a construction system that imitates collaborative systems and decision-making methods that are used by humans. The proposed system relies on the multi-agent concept from the field of artificial intelligence. In order to develop a multi-agent-based system, configurations and functions are proposed for the agents and a framework for collaboration and arbitration between agents is presented. Furthermore, methods are introduced for preventing duplicate work and minimizing interference effects during the collaboration process. Methods are also presented for performing advance planning for the excavators and compactors that are involved in the construction. The current study suggests a theoretical framework and evaluates the results using virtual simulations. However, in the future, an empirical study will be conducted in order to apply these concepts to actual construction sites through the development of a physical system.

Development of the Local Area Design Module for Planning Automated Excavator Work at Operation Level (자동화 굴삭로봇의 운용단위 작업계획수립을 위한 로컬영역설계모듈 개발)

  • Lee, Seung-Soo;Jang, Jun-Hyun;Yoon, Cha-Woong;Seo, Jong-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.363-375
    • /
    • 2013
  • Today, a shortage of the skilled operator has been intensified gradually and the necessity of an earthwork in extreme environment operators are difficult to access is increasing for the purpose of resource development and new living space creation. For this reason, an effort to develop an unmanned excavation robot for fully automated earthwork system is continuing globally. In Korea, a research consortium called 'Intelligent Excavation System' has been formed since 2006 as a part of Construction Technology Innovation Program of Ministry of Land, Transport and Maritime Affairs of Korea. Among detailed technologies of the Task Planning System is one of the core technologies of IES, this paper explains research and development process of the Local Area Design Module, which provides informatization unit to create automated excavators' work command information at operation level such as location, range, target, and sequence for excavation work. Designing of Local Area should be considered various influential factors such as excavator's specification, working mechanism, heuristics, and structural stability to create work plan guaranteed safety and effectiveness. For this research, conceptual and detail design of the Local Area is performed for analyzing design element and variable, and quantization method of design specification corresponding with heuristics and structural safety is generated. Finally, module is developed through constructed algorithm and developed module is verified.

Design Analysis of Hydraulic Excavator since 1990 (1990년대 유압굴삭기 조형 분석에 관한 연구)

  • 윤진필;문무경
    • Archives of design research
    • /
    • v.13 no.4
    • /
    • pp.233-242
    • /
    • 2000
  • The traditional image of hydraulic excavator started to change in two ways since 1990. First, post-heavy equipment's visual image was new waves to traditional image of heavy, strong, and wild. They are the negative aspect that excavators have. Another movement of getting rid of its negative image can be found in late-heavy equipment, which was intended to adapt traditional and positive, but off negative images. In 1990s, the design trend is moving from warm/hard to warm/soft, and KOBELCO can be exceptional example that went even further, gone up to cool-soft image. KOBELCO specially aimed 'post- excavator image' strategy, which has been successful. Image of cabin as a human space changed little bit further than outside image. Each company tried to differentiate the design of cabin focusing on its safety. Following paragraphs show specific trend of image change in form, colour, texture, and the composition. Major visual image change in form tries to follow the image of cars and home appliances which are showing the movement from tough and hard image to soft one. Structural change on local image shows the movement from angular edge to edgeless and the movement of cabin's pillar C placed to back of the equipment with gentle inclination. All of these movements are the result of effort to improve traditional excavator's negative image, that top structure is assembled separately, to positive ones. Today's tendency about its color becomes important to apply two different colour styles. Each style has brightness and tone comparison. As an enormous power convey system, it was in common that its brightness comparison was useful because of the alarm of its damage possibility. However, as its colour control and its design have been emphasized gradually, the tone comparison takes a part in an important role, too. As an example, there is an occasion that these comparisons are compromised simultaneously. In the respect of its image creation, its texture treatments make the tendency of being the same as passenger cars. It is caused from its development of the manufacture techniques of from the fabrication method in small business to the press method in big firm. Further, it is also because of its improvement of painting & coating skills. It may prohibit the reflection effect from solar rays. In the point of view of its visual images, it is recognized the prominent tendency that its composition has been gradually decreased. Lots of windows and the frames tends dark-colour as a whole. It is more preferred to have one colour image, but except KOBELCO and HITACHI. As well, there is another high-tendency to improve its standard treatments, especially for its corner and texture treatments.

  • PDF

An Estimation of Age-, Power-, and Type-Specific Emission Inventories for Construction Equipments Using Improved Methodologies and Emission Factors (배출계수 개발 및 배출량 산정 체계 고도화를 통한 건설기계의 연식, 출력 및 기종별 대기오염물질 배출량 산정)

  • Jin, Hyungah;Lee, Taewoo;Park, Hana;Son, Jihwan;Kim, Sangkyun;Hong, Jihyung;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.555-568
    • /
    • 2014
  • The construction equipment is one of the major sources for hazardous air pollutants in Korea, and the its management has been of great concern recently. The objective of this study was to estimate each contribution of emission of construction equipments according to their production year, electric power consumption and type. To achieve this goal, we developed pollutant emission factors for the machineries manufactured after 2009, which are excluded from the present framework of Korean air pollutants inventory, CAPSS. More than 800 data obtained from emission investigations were utilized for the estimation. Compared with the previous estimation, the scheme used this study was modified to incorporate new emission factors as well as to include the corresponding activity data. Such improvement allow us to gain more detailed emission informations which are better characterized by specifications of construction equipments. The total amount of pollutants emitted from construction equipments in 2011 were estimated as 126.8, 7.0, 58.3, and 17.0 kton for $NO_x$, PM, CO, and VOC, respectively. The estimation results indicate that the increase in the emission of equipments is significantly related to their age and power consumption. The emissions of the older ones manufactured from 1992~1996 were estimated to be the contribution ranged from 23.7% to 26.8%, whereas the newer ones (2009~2011) showed the attributions of 11.3~21.5%. In addition, the results show that the emission of each equipment was increased with the increase in the electric power consumption of engine, probably due to their average output power. Among the nine types of machinery compared, excavators and forklifts were investigated to contribute relatively higher emissions in the level of 39.8~44.0% and 32.0~34.2%, respectively.

Image-based Proximity Warning System for Excavator of Construction Sites (건설현장에 적합한 영상 기반 굴삭기 접근 감지 시스템)

  • Jo, Byung-Wan;Lee, Yun-Sung;Kim, Do-Keun;Kim, Jung-Hoon;Choi, Pyung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.588-597
    • /
    • 2016
  • According to an annual industrial accident report from Ministry of Employment of Labor, among the various types of accidents, the number of accidents from construction industry increases every year with the percentage of 27.56% as of 2014. In fact, this number has risen almost 3% over the last four years. Currently, among the industrial accidents, heavy machinery causes most of the tragedy such as collision or narrowness. As reported by the government, most of the time, both heavy machinery drivers and workers were unaware of each other's positions. Nowadays, however when society requires highly complex structures in minimal time, it is inevitable to allow heavy construction equipments running simultaneously in a construction field. In this paper, we have developed Approach Detection System for excavator in order to reduce the increasing number. The imaged based Approach Detection System contains camera, approach detection sensor and Around View Monitor (AVM). This system is also applicable in a small scale construction fields along with other machineries besides excavators since this system does not require additional communication infra such as server.