• Title/Summary/Keyword: Excavations

Search Result 231, Processing Time 0.027 seconds

A multivariate adaptive regression splines model for estimation of maximum wall deflections induced by braced excavation

  • Xiang, Yuzhou;Goh, Anthony Teck Chee;Zhang, Wengang;Zhang, Runhong
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.315-324
    • /
    • 2018
  • With rapid economic growth, numerous deep excavation projects for high-rise buildings and subway transportation networks have been constructed in the past two decades. Deep excavations particularly in thick deposits of soft clay may cause excessive ground movements and thus result in potential damage to adjacent buildings and supporting utilities. Extensive plane strain finite element analyses considering small strain effect have been carried out to examine the wall deflections for excavations in soft clay deposits supported by diaphragm walls and bracings. The excavation geometrical parameters, soil strength and stiffness properties, soil unit weight, the strut stiffness and wall stiffness were varied to study the wall deflection behaviour. Based on these results, a multivariate adaptive regression splines model was developed for estimating the maximum wall deflection. Parametric analyses were also performed to investigate the influence of the various design variables on wall deflections.

Monitoring Rock Physical Property Changes due to Excavations Using Horizontal Crosshole Georadar Tomography (수평 시추공간 지오레이다 토모그래피를 이용한 터널 굴착에 의한 암반 물성 변화의 고찰)

  • Jung, Yun-Moon;Lee, Myung-Sung;Song, Myung-Jun;Woo, Ik
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.342-347
    • /
    • 1996
  • The changes of electromagnetic wave velocity in rock were monitored to investigate rock behaviors due to the drill & blasting excavations through georadar tomography during the construction of the underground rock laboratory (5 m wide, 6 m high, and 140 m long) at Mabuk-Ri, Goosung-Myun, Yongin-Si, Kyunggi-Do. Two horizontal boreholes spaced 1.4 m apart were drilled parallel to the test tunnel before excavating it, high-resolution crosshole georadar tomography with about 500 MHz electromagnetic waves was performed at pre-excavation phase (May, 1996) and post-excavation phase (August, 1996). The data were acquired with the combination of 34 sources and 44 receivers with space of 0.3 m. Only 11 continuous receivers were selectively utilized with one fixed source. Sampling interval was 0.4 ns and each trace has 512 samples. The first arrival of each trace was picked manually with a picking software. The total number of rays used in inversion amounted to 34x11 and the size of pixel was determined to be 0.3 m. As an inversion technique, SIRT(Simultaneous Iterative Reconstruction Technique) was applied in this study. The velocity of electromagnetic waves at post-excavation phase decreased as large as 15% in comparison with that at pre-excavation phase, which may be attributed to the creation of micro-cracks in rock due to excavations and saturation with groundwater. Small amount of borehole deviation made a critical effect in radar tomography. Totally different tomograms were created after borehole deviation corrections.

  • PDF

Finite Element Analysis for Incremental Excavation in Fluid-Saturated Porous Media (유체포화 다공매체의 단계적 굴착해석을 위한 유한요소해석방법)

  • Koo, Jeong Hoi;Hong, Soon Jo;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.109-122
    • /
    • 1993
  • ln this paper, a finite element analysis procedure is proposed for the incremental multi-step excavations in a fluid-saturated porous medium such as saturated soil ground. As the basis of derivation, Biot's equation was used. The proposed procedure was applied to some one- and two-dimensional problems under incremental excavations. Unsaturated cases as well as saturated cases were considered for comparison. Through numerical tests, the effects of permeability and excavation speed on the deformation history was investigated. Results showed that pore pressure built up during incremental excavation has a significant effect on the deformation and stresses of solid skeleton and validated the use of the present procedure for the analysis of multi-step excavations in fluid-saturated media such as in saturated shallow ground.

  • PDF

Experimental studies on stabilization techniques for ground over abandoned subsurface excavations

  • Pal Samir K.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.142-149
    • /
    • 2003
  • Blind hydraulic backfilling is a commonly used technique for subsidence control of the strata over unapproachable waterlogged underground excavations. In this investigation model studies on all the three variants of this technique, namely, hydro-pneumatic or air-assisted gravity backfilling, pumped-slurry backfilling and simple gravity backfilling, have been carried out in fully transparent models of the underground excavations. On examination of the filling process, it was revealed that in all the three cases, the basic process of filling occurs by sand transport along one or more meandering channels. The relative influence of sand, water and air flow rates on the area of filling from a single inlet point and the hydraulic pressure loss per unit length were studied in details. In hydro-pneumatic backfilling process, the air bubbles while moving upward through the meandering channels provide an additional buoyant force over and above the available hydraulic head. In this way the area of filling from a single borehole may be quite large even at small flow rates of water. During actual field implementation the injected air, if not released completely from the rise side holes, may cause troubles by way of creating potholes on the surface. The pumped-slurry technique has shown its capability of filling a relatively larger area at faster rate, especially when high-volume, low-pressure method was selected. But simple gravity filling was also found to be equally effective method as slurry pumping, especially when flow rates were high. In the second and third method discussed above, examination of variations of injection pressure was also done and its relation with physical phenomenon was also attempted. Some empirical relationships were also developed using multivariate regression with a view to help the practicing engineers.

  • PDF

Development of Struts for Soil Shuttering as a Permanent System (구조물 겸용 흙막이 스트러트 공법)

  • Hong Won-ki;Kim Sun-kuk;Kim Hee-Chul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.3 s.19
    • /
    • pp.71-78
    • /
    • 2004
  • In conventional method of supporting soil shuttering wall during excavation a system of struts and wales to provide cross-lot bracing is common in trench excavations and other excavations of limited width. This method, however, becomes difficult and costly to be adopted for large excavations since heavily braced structural systems are required. Another expensive and unsafe situations are expected when temporary struts must be removed for the construction of underground structures. This paper introduces innovative strut systems which can be used as permanent underground structures after its role as brace system to resist earth pressure during excavation phase. Underground structural system suggested from architect is checked against the soil lated pressures before the analysis of stresses developed from gravity loads. In this technology, named SPS(Struts as Permanent System), retaining wall is installed first and excavation proceeds until the first level of bracing is reached. Braces used as struts during excavation will serve as permanent girders when buildings are in operation. Simultaneous construction of underground and superstructure can proceeds when excavation ends with the last level of braces being installed. In this paper, construction sequence and the calculation concept are explained in detail with some photo illustrations. SPS technology was applied to three selected buildings. One of them was completed and two others are being constructed Many sensors were installed to monitor the behavior of retaining wall, braces as column in terms of stress change and displacement. Adjacent ground movement was also obtained. These projects demonstrate that SPS technology contributes to the speed as well as the economy involved in construction.

Application of portable digital radiography for dental investigations of ancient Egyptian mummies during archaeological excavations: Evaluation and discussion of the advantages and limitations of different approaches and projections

  • Seiler, Roger;Eppenberger, Patrick;Ruhli, Frank
    • Imaging Science in Dentistry
    • /
    • v.48 no.3
    • /
    • pp.167-176
    • /
    • 2018
  • Purpose: In the age of X-ray computed tomography (CT) and digital volume tomography (DVT), with their outstanding post-processing capabilities, indications for planar radiography for the study of the dentition of ancient Egyptian mummies may easily be overlooked. In this article, the advantages and limitations of different approaches and projections are discussed for planar oral and maxillofacial radiography using portable digital X-ray equipment during archaeological excavations. Furthermore, recommendations are provided regarding projections and sample positioning in this context. Materials and Methods: A total of 55 specimens, including 19 skeletonized mandibles, 14 skeletonized skulls, 18 separate mummified heads, and 4 partially preserved mummies were imaged using portable digital X-ray equipment in the course of archaeological excavations led by the University of Basel in the Valley of the Kings between 2009 and 2012. Images were evaluated by 2 authors with regard to the visibility of diagnostically relevant dental structures using a 4-point grading system(Likert scale). Results: Overall, the visibility of diagnostically relevant dental structures was rated highest by both authors on X-ray images acquired using a dental detector. The tube-shift technique in the lateral projections of mandibular dentition achieved the second-best rating, and lateral projections achieved the third-best rating. Conclusion: Conventional planar digital X-ray imaging, due to its ubiquity, remains an excellent method-and often the only practicable one-for examining the skulls and teeth of ancient Egyptian mummies under field conditions. Radiographic images of excellent diagnostic quality can be obtained, if an appropriate methodology regarding the selected projections and sample placement is followed.

Research for Changing of Simgok Seowon's Arrangement (심곡서원 조영의 변화에 대한 고찰)

  • Sim, Joon-Yong;Kim, Wang-Jik
    • Journal of architectural history
    • /
    • v.25 no.6
    • /
    • pp.17-25
    • /
    • 2016
  • Simgok Seowon is the commemorative shrine and academy established for scholar Jo Gwangjo (pen name : Jeongam). The shrine (sangnyangsik) and the east and west dormitories (Dongjae and Seojae) were built in 1636. The lecture hall, Imsimnu Pavilion, Sananggak and Munhyanggak buildings were built successively. Simgok Seowon is the only one that survived through the abolishment of seowon ordered by Regent Heungseon in the 19th century. The original seowon was renowned as a representative example showing the typical lecture hall in front and dormitory at the back (jeondanghujae) layout of the Giho School built in 1650. Two archaeological excavations were conducted in the lecture hall courtyard in 2004 and 2007~2008, which prompted debates the position of the dormitories in respect to the lecture hall, whether the dormitories should be placed in front, or at the back of the lecture hall. Simgok Seowon had been long known as a representative example of the lecture hall in front layout, but the excavations revealed contrasting evidence, suggesting the possibility for a dormitories in front layout. Recent studies and evidence show that the architecture of Simgok Seowon can be grouped into three phases. The first phase was when the shrine and both dormitories were built to the rear of the lecture hall, the second phase was when the lecture hall, Imsimnu Pavilion, Sananggak and Munhyanggak buildings were built, and lastly the third phase when the east, west dormitories were reconstructed in front of the lecture hall. The large scale construction of Simgok Seowon is related to the education based management of the academy by Doam Yi Jae, and the 17~18th century remains confirmed from the archaeological excavations are evidence of this. Remains for Imsimnu Pavilion, Sananggak, and Munhyanggak buildings have yet to be confirmed, and spaces to the south and east of the seowon are unidentified. Therefore, it is necessary to conduct investigations and research for the unexcavated spaces of the seowon, to conduct in-depth studies and for the effective adaptive re-use of the seowon.

Numerical and experimental study of multi-bench retained excavations

  • Zheng, Gang;Nie, Dongqing;Diao, Yu;Liu, Jie;Cheng, Xuesong
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.715-742
    • /
    • 2017
  • Earth berms are often left in place to support retaining walls or piles in order to eliminate horizontal struts in excavations of soft soil areas. However, if the excavation depth is relatively large, an earth berm-supported retaining system may not be applicable and could be replaced by a multi-bench retaining system. However, studies on multi-bench retaining systems are limited. The goal of this investigation is to study the deformation characteristics, internal forces and interaction mechanisms of the retaining structures in a multi-bench retaining system and the failure modes of this retaining system. Therefore, a series of model tests of a two-bench retaining system was designed and conducted, and corresponding finite difference simulations were developed to back-analyze the model tests and for further analysis. The tests and numerical results show that the distance between the two rows of retaining piles (bench width) and their embedded lengths can significantly influence the relative movement between the piles; this relative movement determines the horizontal stress distribution in the soil between the two rows of piles (i.e., the bench zone) and thus determines the bending moments in the retaining piles. As the bench width increases, the deformations and bending moments in the retaining piles decrease, while the excavation stability increases. If the second retaining piles are longer than a certain length, they will experience a larger bending moment than the first retaining piles and become the primary retaining structure. In addition, for varying bench widths, the slip surface formation differs, and the failure modes of two-bench retained excavations can be divided into three types: integrated failure, interactive failure and disconnected failure.

Track Stability Assessment for Deep Excavations in Adjacent to Urban Railways (도시철도 인접지반 깊은 굴착 시 궤도 안정성 평가)

  • Jeon, Sang-Soo;Lee, Sang-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.614-627
    • /
    • 2018
  • Urban railway lines have been constructed adjacent to residential buildings and urban areas. The expansion of transportation networks and reconstruction of residential buildings in highly populated urban areas require deep excavations in areas adjacent to urban railways. Mobilized soil stresses and changes in the groundwater level induced by deep excavations results in track irregularities in urban railways. In this study, a three-dimensional finite difference model using the commercial program FLAC3D was adopted to estimate the horizontal displacements of earth retaining structures, settlements of backfill, the stability of track irregularity and underground box structure based on the criteria of each railway organization and its relationships. In deep excavations, a change in groundwater level induces relatively very small differences for track gauge irregularities, whereas relatively large differences for longitudinal irregularities of 72.5%, twist irregularities of 83.3%, cross level irregularities of 61.9%, and alignments of 43.3% were found to be the maximum differences when the horizontal displacement of earth retaining wall and settlement of backfill were 65.1% and 21.4%, respectively, because the groundwater level (GWL) on the ground surface-mobilized tensile strength of the underground box structure exceeds the allowable value. Therefore, three-dimensional numerical analysis was performed in this study. Overall, real-time monitoring should be carried out to prevent railway accidents in advance when a deep excavation adjacent to urban railway structures is constructed.