• 제목/요약/키워드: Excavation work

검색결과 271건 처리시간 0.024초

Decision Support Tool for Excavation Operation using Genetic Algorithms

  • Lee, Ung-Kyun;Kang, Kyung-In;Cho, Hun-Hee
    • Architectural research
    • /
    • 제8권2호
    • /
    • pp.43-48
    • /
    • 2006
  • The appropriate fleet estimation of the excavation equipment is a major factor in the determination of the cost and time requirements of a project. But the decision of what kind of equipment selected is often based on heuristic methods or trial and error in Korea. Thus, this study proposes a prototype model that uses genetic algorithms to select fleet estimation of loaders (backhoe) and trucks used in excavation work. To verify the applicability of this model, the case study was performed. And the result of the genetic model was compared with that of the trial & error method. The use of the genetic model suggested this study required 44days, 2 units of backhoes, 7 units of trucks, and a total cost of 171,839,756 won. With the estimated fleet number of equipment, the minimum cost of excavation work can be calculated, taking account of the time-cost trade-off. By utilizing this prototype model, the efficiency of excavation work can be improved.

인공신경망 기법을 활용한 굴착공사 흙막이 변위량 예측에 관한 연구 (A Study on Neural Networks Forecast Model of Deep Excavation Wall Movements)

  • 신한우;김광희;김용석
    • 한국건축시공학회지
    • /
    • 제7권3호
    • /
    • pp.131-137
    • /
    • 2007
  • To predict deep excavation wall movements is important in the urban areas considering the cost and the safety in construction. Failing to estimate deep excavation wall movements in advance causes too many problems in the projects. The purpose of this study is to propose the forecast model of deep excavation wall movements using artificial neural networks. The data of the Deep Excavation Wall Movements which were done form Long research is used of Artificial neural networks training and apply the real construction work measured data to the Artificial neural networks model. Applying the artificial neural networks to forecast the deep excavation wall movements can significantly contribute to identifying and preventing the accident in the overall construction work.

지반굴착공사에서의 위험요인 선정과 안전관리방안 연구 (Risk Factor Selaction and Safety Management Plan in the Underground Excavation Construction)

  • 원유진;강경식
    • 대한안전경영과학회지
    • /
    • 제21권4호
    • /
    • pp.31-37
    • /
    • 2019
  • When the foundation work of the underground part of the building structure or the excavation work of the civil engineering structure is carried out, there is the earthwork work by the inevitable process. As the economic situation continues to develop, construction in urban areas is becoming bigger and higher in scale due to the expansion of infrastructure and the rescue of urban dwellings in urban areas, and excavation of underground roads is inevitable. Excavation of the underground part may cause problems in the process difficulty and safety of the earthworks due to the complexity and various characteristics of the ground selected without consideration of the ground characteristics and site conditions. In order to complete the required facilities, it is necessary to secure the design and construction of the retaining walls. In order to complete the required construction, It is an important factor satisfying construction period and economical efficiency.

BRACED EXCAVATION NEAR THE EXISTING STRUCTURES

  • Maruoka, Masao
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1990년도 PROCEEDINGS OF THE FIRST KOREA-JAPAN JOINT GEOTECHNICAL SEMINAR ON EXCAVATION and TUNNELING IN URBAN AREAS
    • /
    • pp.129-144
    • /
    • 1990
  • This paper is an introduction of measured samples of a peripheral ground displacement resulting from excavation work, and the work carried out to minimize the displacement of the earth retaining wall and the adjacent structures.

  • PDF

건설장비 가이던스 시스템 도입을 위한 비즈니스 모델 효과 (Effectiveness of a Business Model for Adopting a Construction Machine Guidance System)

  • 문성우
    • 한국BIM학회 논문집
    • /
    • 제8권1호
    • /
    • pp.24-32
    • /
    • 2018
  • A construction machine guidance system is an assistance system that helps construction equipment operators dig grounds during excavation work at a construction site. This system has long been applied in the overseas countries of the United States, Japan and Europe. However, the system has not been paid much attention in Korea. The objective of this paper is to present a business model for adopting construction machine guidance systems in Korea and evaluate the effectiveness of applying the system to excavation work. The business model in this study shows a new process of applying construction machine guidance system, business stakeholders and revenues, and suggests the benefits to the business stakeholders. A field test of the construction machine guidance system proves that the system can be applied as a tool that can improve the productivity of excavation work. This productivity improvement consequently demonstrates that the business model in this study is a prospective challenge in improving the effectiveness of excavation work at the construction site.

브레이싱을 이용한 자립식 흙막이 공법에 관한 연구 (A Study on the Self-contained Earth Retaining Wall Method Using Bracing)

  • 김종길
    • 디지털융복합연구
    • /
    • 제17권3호
    • /
    • pp.205-213
    • /
    • 2019
  • 건설현장의 굴토작업과 흙막이 가시설은 서로 밀접한 관계를 가지고 있다. 협소한 공간에서 가장 효율적으로 지하구조물을 축조하고 굴토작업시 외측 배면의 토사 이완을 방지하고 지하수위를 유지하기 위한 방안으로 안전성이 확보된 흙막이 가시설 설치는 반드시 필요하다. 본 연구는 기존 지하층 굴토공사에서 흙의 유실을 방지하기 위해 설치하는 가설흙막이를 종래에는 가설벽체를 형성하고 어스앵커, 래커, 스트러트 등을 이용하여 내부 지보를 하고 굴토공사를 시행하던 방식에서, RSB공법은 기존 재래식공법의 문제점을 개선하여, 내부 지보재를 제거하고 2열 엄지말뚝과 브레이싱을 이용하여 자립으로 토압에 저항하도록 하여 지반굴착을 진행하는 공법이다. 본 연구에서는 RSB공법 현장시범적용과 계측결과를 통하여 굴착방법에 따른 흙막이 가시설의 공법 적용성, 평가결과 발생변위가 모두 계측 허용치 만족하고. 기존 재래식공법에 비해 시공성과 경제성이 향상되었다.

깊은 굴착에서 파쇄대를 갖는 연암 및 경암 지층의 지반 거동분석 사례연구 (Case Study of Ground Behavior Analysis of Soft and Hard Rock Layers with Fractured Zones in Deep Excavation)

  • 김성욱;한병원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.521-532
    • /
    • 2008
  • Supporting system design and construction management for the soft and hard rock layers with fractured zones are very important theme for the safety of temporary retaining wall, surrounding ground and structures in the urban deep excavation for the construction of subway, railway, building etc. The prevailing design method of supporting system for the soft and hard rock layers in the deep excavation is mostly carrying out by simplification without proper consideration for the characteristic of rock discontinuities. Therefore the behaviors of rock discontinuities and fractured zones dominate the whole safety of excavation work in the real construction stage, serious disaster due to the failure of temporary retaining wall can be induced in the case of developing large deformations in the ground and large axial forces in the supporting system. This paper introduces examples of deep excavation where the soft and hard rock layers with fractured zones were designed to be supported by shotcrete and rock bolt, deformations of corresponding ground and supporting systems in the construction period and increments of axial force in the upper earth anchors and strut due to the these deformations were investigated through detailed analysis of measurement data, the results were so used for the management of consecutive construction that led to the safe and economical completion of excavation work. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

산악터널에 인접한 개인 박물관의 발파공해 영향평가 및 굴착 시공사례 (The Blasting Pollution Effects Estimation & The Excavation Construction Case Study Of Personal Museum On Tunnel)

  • 권순섭;이명철;박태순;정인철;이현구
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.127-132
    • /
    • 2004
  • The third double-track construction part of work, called Chung Ang Railroad line(Deok-So$\∼$Won-Ju) is in progress and the personal museum located 330m from the starting point of Pal-Dang Tunnel(length=4,470m) line in the canyon is to be effected by rock blasting during the tunnel excavation work, especially museum articles and building itself. This paper is the example of application suitable tunnel rock blasting pattern for excavation after the case study about the investigation and analysis of rock blasting noise pollution during tunnel excavation work. The museum is a three-story building, RC concrete structure and is located 17m from the top of the tunnel, in the center of the double-track line. Comparing estimate vibration frequency with site vibration one, it can be verified the reasonable rock blasting noise pollution as improving the application of tunnel excavation rock blasting pattern. The above pattern has been selected economically and effectively and applied to our construction field.

  • PDF

시공단계를 고려할 수 있는 유한요소 해석 모델 개발 (Development of finite element analysis model for multi-step excavation problem)

  • 이연규
    • 터널과지하공간
    • /
    • 제6권4호
    • /
    • pp.326-334
    • /
    • 1996
  • In underground construction the multi-step excavation sequence is commonly adopted for the convenience of the underground work. A numerical simulation method which is capable of analyzing the effects of excavation sequence on the stability of the opening is greatly needed. In this study a two dimensional finite element code was developed based on the effective numerical algorithm for the multistep excavation. The practical applicability of the model was verified for the simplified excavation sequences.

  • PDF

Geographical and Equipment Modeling for 3D Excavation Simulation

  • Moon, Sungwoo;Jo, Hwani;Ku, Hyeonggyun;Choi, Sungil
    • 국제학술발표논문집
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.242-244
    • /
    • 2017
  • Excavation for construction is implemented in natural geographical terrain using a variety of construction equipment. Therefore, 3D excavation simulation requires integration of geographical and equipment modeling. This paper proposes a technique that integrates geographical and equipment modeling for 3D simulations of construction excavation. The geographical model uses a digital map to show ground surface changes during excavation and the equipment model shows equipment movement and placement. This combination produced a state of the art 3D simulation environment that can be used for machine guidance. An equipment operator can use the 3D excavation simulation to help construction equipment operators with decisions during excavation work and consequently improve productivity.

  • PDF