• Title/Summary/Keyword: Excavation simulation

Search Result 159, Processing Time 0.023 seconds

Centrifugal Modelling on the Displacement Mode of Unpropped Diaphragm Wall with Surcharge (과재하중이 있는 Unpropped Diaphragm Wall의 변위양상에 관한 원심모델링)

  • 허열;이처근;안광국
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.135-145
    • /
    • 2004
  • In this study, the behavior of unpropped diaphragm walls on decomposed granite soil was investigated through centrifugal and numerical modelling. Centrifuge model tests were performed by changing the interval distance of surcharge. Excavation was simulated during the centrifuge tests by operating a solenoid valve that allowed the zinc chloride solution to drain from the excavation. In these tests, ground deformation, wall displacement and bending moment induced by excavation were measured. FLAC program which can be able to apply far most geotechnical problems was used in the numerical analysis. In numerical simulation, Mohr-Coulomb model fur the ground model, an elastic model for diaphragm wall were used for two dimensional plane strain condition. From the results of model tests, failure surface was straight line type, the ground of retained side inside failure line had downward displacement to the direction of the wall, and finally the failure was made by the rotation of the wall. The angle of failure line was about 67 ∼ 74$^{\circ}$, greater than calculated value. The locations of the maximum ground settlement obtained from model tests and analysis results are in good agreements. The displacement of wall and the change of the embedment depth is likely to have linear relationship.

A Study on the Upper Ground Reinforcement Effect in Underground Cavern (지하공동 상부지층 보강효과에 관한 연구)

  • Kim, Ki Ho;Lim, Jong Se;Jang, Won Yil
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.275-283
    • /
    • 2015
  • Excavation of underground space in soft ground implicate to the structure, such as subsidence. As a result, it has been acting as a serious risk to the stability of the roads and facilities. Therefore, in order to stabilize the soil stabilization and reinforcement of the structure, we have been using a number of methods and injecting material. In this study, we compared and analyzed the amount of subsidence regarding the ground reinforcement during underground excavation in soft ground by performing model test. And three-dimensional numerical analysis was performed using FLAC 3D. The subsidence was simulated numerically according to the tunnel excavation. The subsidence results of the model tests and numerical analyzes were relatively consistent. Thus comparing the ground subsidence by varying the reinforcement area on the numerical analysis was analyzed. As a results, three-dimensional numerical simulation could be regarded to simulate better on the ground subsidence by various kinds of underground excavation and it can be used as a material of subsidence prevention methods.

Investigation of effects of twin excavations effects on stability of a 20-storey building in sand: 3D finite element approach

  • Hemu Karira;Dildar Ali Mangnejo;Aneel Kumar;Tauha Hussain Ali;Syed Naveed Raza Shah
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.427-443
    • /
    • 2023
  • Across the globe, rapid urbanization demands the construction of basements for car parking and sub way station within the vicinity of high-rise buildings supported on piled raft foundations. As a consequence, ground movements caused by such excavations could interfere with the serviceability of the building and the piled raft as well. Hence, the prediction of the building responses to the adjacent excavations is of utmost importance. This study used three-dimensional numerical modelling to capture the effects of twin excavations (final depth of each excavation, He=24 m) on a 20-storey building resting on (4×4) piled raft. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modelling can provide a more realistic simulation to capture responses of the system. The hypoplastic constitutive model was used to capture soil behaviour. The concrete damaged plasticity (CDP) model was used to capture the cracking behaviour in the concrete beams, columns and piles. The computed results revealed that the first excavation- induced substantial differential settlement (i.e., tilting) in the adjacent high-rise building while second excavation caused the building tilt back with smaller rate. As a result, the building remains tilted towards the first excavation with final value of tilting of 0.28%. Consequently, the most severe tensile cracking damage at the bottom of two middle columns. At the end of twin excavations, the building load resisted by the raft reduced to half of that the load before the excavations. The reduced load transferred to the piles resulting in increment of the axial load along the entire length of piles.

Influence characteristics of isolation piles on deformation of existing shallow foundation buildings under deep excavation

  • Liu, Xinrong;Liu, Peng;Zhou, Xiaohan;Wang, Linfeng;Zhong, Zuliang;Lou, Xihui;Chen, Tao;Zhang, Jilu
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Urban deep excavation will affect greatly on the deformation of adjacent existing buildings, especially those with shallow foundations. Isolation piles has been widely used in engineering to control the deformation of buildings adjacent to the excavation, but its applicability is still controversial. Based on a typical engineering, numerical calculation models were established and verified through monitoring data to study the influence characteristics of isolation piles on the deformation of existing shallow foundation buildings. Results reveal that adjacent buildings will increase building settlement δv and the deformation of diaphragm walls δh, while the isolation piles can effectively decrease these. The surface settlement curve is changed from "groove" type to "double groove" type. Sufficiently long isolation pile can effectively decrease δv, while short isolation piles will lead to a negative effect. When the building is within the range of the maximum settlement location P, maximum building rotation θm will increase with the pile length L and the relative position between isolation pile and building d/D increase (d is the distance between piles and diaphragm walls, D is the distance between buildings and diaphragm walls), instead, θm will decrease for buildings outside the location P, and the optimum was obtained when d/D=0.7.

Geometric Modeling and Trajectory Control Design for an Excavator Mechanism (굴삭기 작업장치부의 기하학적 동역학 모델링 및 궤적 제어에 관한 연구)

  • Kim, S.H.;Yoo, S.J.;Lee, K.I.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2007
  • During the last few decades, excavation automation has been investigated to protect the operator from the hazardous working environment and to relieve the cost of the skilled operator. Therefore, a number of modelling and controller design methods of the hydraulic excavator are proposed in many literatures to realize the excavation automation. In this article, a geometric approach far the multi-body system modeling is adopted to develop the excavator mechanism model that contains 4 kinematic loops and 12 links. Considering a simple soil mechanism model with a number of uncertain soil parameters, an adaptive trajectory tracking control strategy based on the developed excavator model is proposed. The improved performance of the designed controller over the simple PID controller is validated via the simulation study.

  • PDF

Preliminary results of groundwater flow simulation for high level radioactive disposal in Yu-seong area

  • Park kyung-woo;Cho sung-il;Kim chun-soo;Kim kyung-su;Lee kang-keun
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.253-257
    • /
    • 2005
  • This research aims to demonstrate the regional and site scale groundwater flow simulation for the high level radioactive disposal research site in Yu-seong. We used the Modflow by a finite difference method for groundwater flow simulation, and Modpath module in Modflow package for particle tracking simulation. The range of numerical domain for regional groundwater flow model is $16.32km{\times}20.16km$. And, the depth of numerical domain was expanded to 6,000m. The area of numerical domain for the site scale groundwater flow simulation is $1.6km{\times}1.6km$. Since 2005, the underground research tunnel(URT) is being constructed at KAERI(Korea Atomic Energy Research Institute) site. In the site scale groundwater flow model, the groundwater flow around the KAERI site is simulated. And the change of groundwater level with tunnel excavation is also predicted.

  • PDF

Analysis of Hydro-Mechanical Coupling Behavior Considering Excavation Damaged Zone in HLW Repository (고준위방사성폐기물 처분장에서의 굴착손상대를 고려한 수리-역학적 복합거동 해석)

  • Jeewon Lee;Minju Kim;Sangki Kwon
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.38-61
    • /
    • 2023
  • An Excavation Damaged Zone(EDZ) caused by blasting impact changes rock properties, in situ stress distribution, etc., and its effects are noticeable at around a radioactive waste repository located at deep underground. In particular, the increase in permeability due to the formation of cracks may significantly increase the amount of groundwater inflow and the possibility of radioactive nuclide outflow. In this study, FLAC2D and FLAC3D were used to analyze the mechanical and thermal behaviors for three categories: a)No EDZ, b)Uniform EDZ, and c)Random EDZ. It was found that the tunnel displacement in the Random EDZ case was 423% higher than that in the No EDZ case and was 16% higher than that in the Uniform EDZ case. Tunnel inflow in the Random EDZ was also 17.3% and 10.8% higher than that in the No EDZ and the Uniform EDZ case, respectively. The permeability around the tunnel was increased by up to 10 times in the corner of the tunnel wall and roof due to the stress redistribution after excavation. From the computer simulation, it was found that the permeability around the tunnel wall was partially increased but the overall tunnel inflow was decreased with increase of stress ratio. Mechanical analysis using FLAC 3D showed similar results. Slight difference between 2D and 3D could be explained with the development of plastic zone during the advance of tunnel excavation in 3D.

Visualization and Optimization of Construction Schedule Considering the Geological Conditions in the Complicated Underground Cavern (지하비축기지 건설시 지질조건을 고려한 건설공정의 가시화와 최적화 사례)

  • Choi, Yong-Kun;Park, Joon-Young;Lee, Sung-Am;Kim, Ho-Yeong;Lee, Hee-Suk;Lee, Seung-Cheol
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.167-173
    • /
    • 2009
  • Underground storage cavern is known as the most complicated underground project because of the complexity of construction schedule, tunnel size, and geological problems. In order to optimize the construction schedule of underground storage cavern, two up-to-date technologies were applied. The first technology was 3 dimensional visualization of complicated underground structures, and the second was 4 dimensional simulation considering construction resources, geological conditions and construction schedule. This application case shows that we can achieve optimized construction schedule in the ways to optimize the number of work teams, fleets, the sequence of tunnel excavation, the commencement time of excavation and the hauling route of materials and excavated rocks. 3 dimensional modeling can help designer being able to understand the status of complicated underground structures and to investigate the geological data in the exact 3 dimensional space. Moreover, using 4 dimensional simulation, designer is able to determine the bottle neck point which appear during hauling of excavated rocks and to investigate the daily fluctuation in cost.

Evaluation of Soil Parameters Using Adaptive Management Technique (적응형 관리 기법을 이용한 지반 물성 값의 평가)

  • Koo, Bonwhee;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.47-51
    • /
    • 2017
  • In this study, the optimization algorithm by inverse analysis that is the core of the adaptive management technique was adopted to update the soil engineering properties based on the ground response during the construction. Adaptive management technique is the framework wherein construction and design procedures are adjusted based on observations and measurements made as construction proceeds. To evaluate the performance of the adaptive management technique, the numerical simulation for the triaxial tests and the synthetic deep excavation were conducted with the Hardening Soil model. To effectively conduct the analysis, the effective parameters among the parameters employed in the model were selected based on the composite scaled sensitivity analysis. The results from the undrained triaxial tests performed with soft Chicago clays were used for the parameter calibration. The simulation for the synthetic deep excavation were conducted assuming that the soil engineering parameters obtained from the triaxial simulation represent the actual field condition. These values were used as the reference values. The observation for the synthetic deep excavation simulations was the horizontal displacement of the support wall that has the highest composite scaled sensitivity among the other possible observations. It was found that the horizontal displacement of the support wall with the various initial soil properties were converged to the reference displacement by using the adaptive management technique.

Non-fluid representation technique using fluid simulation (유체 시뮬레이션 기술을 이용한 비유체 표현기법)

  • Lee, Sung-Jun;Heo, Yeon-Jin;Shin, Byeong-Seok
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.4
    • /
    • pp.51-61
    • /
    • 2019
  • In this paper, we have implemented soil simulation using fluid simulation technology. A widely used NVIDIA FleX was used to represent the soil generated by excavation work. FleX is a particle-based physics simulation library that combines SPH (Smoothed-particle hydrodynamics) and Position Based Dynamics techniques. However, since the soil has not only fluid properties but also non-fluid properties, it is difficult to simulate with the functions provided by conventional FleX. In this study, we added a technique to simulate non-fluid behavior using existing Flex. This can lead to effective results improvement at low cost.