• Title/Summary/Keyword: Excavation face

Search Result 254, Processing Time 0.026 seconds

Major causes of failure and recent measurements of tunnel construction (터널시공 중 붕락발생 원인과 최신 보강기술)

  • Park, Bong-Ki;Hwang, Je-Don;Park, Chi-Myeon;Kim, Sang-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.140-153
    • /
    • 2005
  • During the tunnel construction the major failure mode can be categorized as: tunnel failure just after the tunnel excavation without support, failure after application of shotcrete and finally failure after setting the concrete lining. The failure mode just after the tunnel excavation without support, can be further classified as : bench failure, crown failure, face failure, full face failure, failure due to weak strata and failure due to overburden. Moreover the failure after application of shotcrete is classified as heading face failure, settlement of shotcrete support, local failure of shotcrete lining and invert shotcrete. To find out the major causes of tunnel collapse, the investigation was done in case of the second phase of Seoul subway construction. The investigation results depicted that the major causes of tunnel collapse were due to the weak layer of rock/fault and sudden influx of ground water from the tunnel crown. While the investigation results of the mountain road tunnels construction have shown that the major causes of tunnel failure were inadequate analysis of tunnel face mapping results, intersection of faults and limestone cavities. In this paper some recent measurement in order to mitigate such tunnel collapse are presented

  • PDF

FE model of electrical resistivity survey for mixed ground prediction ahead of a TBM tunnel face

  • Kang, Minkyu;Kim, Soojin;Lee, JunHo;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.301-310
    • /
    • 2022
  • Accurate prediction of mixed ground conditions ahead of a tunnel face is of vital importance for safe excavation using tunnel boring machines (TBMs). Previous studies have primarily focused on electrical resistivity surveys from the ground surface for geotechnical investigation. In this study, an FE (finite element) numerical model was developed to simulate electrical resistivity surveys for the prediction of risky mixed ground conditions in front of a tunnel face. The proposed FE model is validated by comparing with the apparent electrical resistivity values obtained from the analytical solution corresponding to a vertical fault on the ground surface (i.e., a simplified model). A series of parametric studies was performed with the FE model to analyze the effect of geological and sensor geometric conditions on the electrical resistivity survey. The parametric study revealed that the interface slope between two different ground formations affects the electrical resistivity measurements during TBM excavation. In addition, a large difference in electrical resistivity between two different ground formations represented the dramatic effect of the mixed ground conditions on the electrical resistivity values. The parametric studies of the electrode array showed that the proper selection of the electrode spacing and the location of the electrode array on the tunnel face of TBM is very important. Thus, it is concluded that the developed FE numerical model can successfully predict the presence of a mixed ground zone, which enables optimal management of potential risks.

A Study on the Estimation of Load Distribution Factors Considering Excavation Methods and Initial Stress Conditions (굴착방법과 초기지압 조건을 고려한 하중분배율의 산정 연구)

  • Park, Yeon-Jun;Ryu, Il-Hyung
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.192-204
    • /
    • 2011
  • In this study, 3-D analyses were conducted while taking every construction stage into account. Then 2-D analyses were conducted which yield the same results with the 3-D results. The crown settlement normalized by the ultimate value was compared during the process to overcome the discrepancy caused by different dimensions. When a bench or a core is left uncut to give extra support to the face and eventually the whole excavation boundary, this extra supporting effect also has to be included in the analysis. In this study, this effect is also implemented in terms of the load distribution factor. When the length of the bench is very short compared to the diameter of the tunnel in such cases as in short bench cut or in mini-bench cut, the supporting effect of the face does not disappear even after the bench is completely excavated and supported since the face is still too close to the point of interest. The 4th load distribution factor was defined to stand for the advance of the face after the completion of the excavation cycle. The 4th load distribution factor turned out to be very useful in determining the load distribution factors when a tunnel is excavated by bench cut with various bench lengths under different initial conditions.

Active Earth Pressure Acting on Excavation Wall Located Near Existing Wall Face (도심지 인접 굴착 시 굴착벽에 작용하는 횡방향 토압에 대한 연구)

  • Lee, Jin-Sun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.67-74
    • /
    • 2012
  • The arching effect of the active earth pressure acting on an excavation wall subjected to close excavation reduces lateral earth pressure acting on excavation wall. In this paper, the arching effect was estimated for varying width to excavation depth ratio and wall friction angle by analytical and numerical methods verified with centrifuge test results. The arching effect is significant when the width to excavation depth ratio and wall friction angle is decreased and increased, respectively. The analytical solution derived from the classical arching theory suggested by Handy(1985) shows good agreement with the numerical solution than the other solutions.

특정 사례터널 해석 결과 및 평가

  • Lee, Seung-Rae;O, Se-Bung;Baek, Gyu-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.123-132
    • /
    • 1991
  • The GEOKST program was used to solve the tunnel example problem. The package can solve such geotechnical problem as excavation, embankment, foundations, etc., in which the soil can be modeled by various elastoplastic geomaterial models. The main objective was to consider the effects of excavation depth to the face of the tunnel on the stability of the ground and support system. Depended on the strength of the ground materials, the limit excavation depth without any support system could be established by analyzing three-dimensional excavation problem. In this given example problem, the strengths of the ground materials were enough for the stability of the tunnel without any support system up to fairly deep excavation and the maximum tunnel section displacement was stabilized as the excavation proceed. The asymptotic value was approximately the same as that of the plane strain analysis. Thus, assuming the plain strain condition and simulation the actual excavation procedure, the maximum tunnel section displacement was caculated after final step. The maximum calculated displacement occured at the top section of the tunnel geometry and was about 8mm.

  • PDF

A parametric investigation on effect of supporting arrangements on earth retention system

  • Ali Murtaza Rasool;Fawad S. Niazi;Tauqir Ahmed;Mubashir Aziz
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.507-518
    • /
    • 2023
  • The effects of various supporting arrangements have been investigated on an excavation support system using a numerical tool. The purpose of providing different supporting arrangements was to limit the pile wall deflection in the range of 0.5% to 1% of the excavation depth. Firstly, a deep excavation supported by sheet pile wall was modeled and the effects of sheet pile wall thickness, excavation depth and distance to adjacent footings from sheet pile wall face were explored on the soil deformation and wall deflection. Further analysis was performed considering six different arrangements of tieback anchors and struts in order to limit the wall deflections. Case-01 represents the basic excavation geometry supported by sheet pile wall only. In Case-02, sheet pile wall was supported by struts. Case-03 is a sheet pile wall supported by tieback anchors. Likewise, for the Cases 04, 05 and 06, different arrangements of struts and tieback anchors were used. Finally, the effects of different supporting arrangements on soil deformation, sheet pile wall deflection, bending moments and anchor forces have been presented.

Effect of hardfacing on wear reduction of pick cutters under mixed rock conditions

  • Chang, Soo-Ho;Lee, Chulho;Kang, Tae-Ho;Ha, Taewook;Choi, Soon-Wook
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.141-159
    • /
    • 2017
  • A pick cutter is a rock-cutting tool used in partial-face excavation machines such as roadheaders, and its quality is a key element influencing the excavation performance and efficiency of such machines. In this study, pick cutters with hardfacing deposits applied to a tungsten carbide insert were made with aim of increasing their durability and wear resistance. They were field-tested by being installed in a roadheader and compared with conventional pick cutters under the same excavation conditions for 24 hours. The hardfaced pick cutters showed much smaller weight loss after excavation, and therefore better excavation performance, than the conventional pick cutters. In particular, the damage to and detachment (loss) of tungsten carbide inserts was minimal in the hardfaced pick cutters. A detailed inspection using scanning electron microscope-energy dispersive X-ray spectrometry and three-dimensional X-ray computed tomography scanning revealed no macro- or micro-cracks in the pick cutters. The reason for the absence of cracks may be that the heads of pick cutters are mechanically worn after the tungsten carbide inserts have been worn and damaged. However, scanning revealed the presence of voids between tungsten carbide inserts and pick cutter heads. This discovery of voids indicates the need to improve production processes in order to guarantee a higher quality of pick cutters.

An experimental study on the load transfer machanism of shallow 2-arch tunnel excavation sequence with vertical discontinuity planes in sandy ground (연직 불연속면이 존재하는 얕은 심도의 사질토 지반에서 2-arch 터널 단계별 굴착에 따른 하중전이에 관한 실험적연구)

  • Oh, Bum-Jin;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.215-231
    • /
    • 2011
  • In this study, the behavior of a shallow 2-arch tunnel during the excavation in the sandy ground containing vertical discontinuity plane was experimentally studied. Load transfer mechanism in the pillar caused by a 2-arch tunnel excavation was observed. The position of the vertical discontinuity plane was varied. Model tests were carried out in the normal construction sequence of 2-arch tunnel. Test results-showed that the load transfer caused by the 2-arch tunnel excavation was concentrated in the discontinuity plane, and was cut by the discontinuity plane, so no load transfer took place above the discontinuity plane. It was also shown that the effect of adjacent tunnel excavation on the pillar load and the ground deformation was greater when excavating the upper half-face of the main tunnel, more than when excavating the lower half-face.

Face to Face with the Past: Memorizing the Plague of Athens through the Exhibition (과거와의 대면 : ${\ll}$미르티스${\gg}$ 전시를 통해 기억된 아테네 대 역병)

  • Cho, Eun-Jung
    • The Journal of Art Theory & Practice
    • /
    • no.14
    • /
    • pp.7-32
    • /
    • 2012
  • The exhibition was started in 2010 in the New Acropolis Museum of Athens and embarked a journey since 2011 as a travelling exhibition inside Greece and abroad. The main purpose of the exhibition was to draw attention of the general public to the value of the 'rescue excavation' and of cultural heritage of Greece, by presenting the reconstruction bust of a girl whose skull was found in Kerameikos cemetery of ancient Athens. The new Kerameikos excavation was initiated by the construction of Metropolitan Railway lines in the center of Athens between 1992 to 1998. It revealed a pit of a mass burial where about 150 people were inhumed in a very hasty way without proper funeral rites or offerings. These bodies are identified as the victims of the infamous plague of Athens in the first years of the Peloponnesian War(430-426 BC). The epidemic disease killed almost one third of the city population including Pericles, and brought extreme fear and panic to the Athens society. The traditional funerary rites were totally disrupted, and the social decorum and the morality among the citizens became enfeebled. The plague and the civil war were the decisive factors to end the Golden Age of Democratic Athens. However, the exhibition organizers did not focus on the tragic aspect of this disaster and its casualties. Their main concern was to simplify the scholarly works of archaeological excavation and microchemistry analysis so that the exhibition viewers will easily understand and empathize the living value of the scholarly works of ancient Greek civilization. The centripetal element of the exhibition was the vivid face of an 11 years old ancient girl 'Myrtis', which was carefully reconstructed based on both the scientific data and artistic imagination. Also the set up of the exhibition was structured in order to stimuli cognitive and emotional experience of the visitors who witnessed the rebirth of a vibrant human being from an ancient debris. The museologists' continuous efforts to promote projects of contemporary artists, publications, and school programs related to the exhibition indicate that the ulterior motive of this exhibition is the cultural education of the present and future generation through the intimate experiences of ancient Greek life. Also this is the reason why the various museums that held the travelling exhibition try to make the presentation as a gesture of memorial service for an anonymous Athenian girl who deceased circa 2400 years ago. The pragmatic efforts of Greek scholars and museologists through exhibition show us a way to find a solution to the continuous threat of cultural resources by massive construction projects and land development, and to overcome public indifference to the history and cultural heritage.

  • PDF

Deformation Behavior and Reinforcement Design of a Tunnel Excavated in Weak Rock by the NATM (연약암반에 굴착되는 NATM 터널의 변형거동과 보강설계)

  • 서영호;이정인
    • Tunnel and Underground Space
    • /
    • v.3 no.2
    • /
    • pp.132-141
    • /
    • 1993
  • Laboratory and field tests were performed to find out the effectiveness of ground improvement by grouting for an urban subway tunnel that was excavated in weak rock by the NATM. Field measurements were carried out to monitor the behavior of rock mass around the tunnel and to ensure the validity of the current design of the distance form the measuring points to the tunnel face. The final converged displacement and the peroid were predicted using the gamma function. It was found that the ground improvement in terms of reduced permeability and increased stength in the self-supportability of the excavation face enabled the NATM applied in poor gorund. As the result of applying the gamma function to the predicting of displacement, the final displacement including the preceding one and the converged period could be approximately predicted at the early excavation stage.

  • PDF