• 제목/요약/키워드: Excavation Volume

검색결과 111건 처리시간 0.026초

Geo-surface Environmental Changes and Reclaimed Amount Prediction Using Remote Sensing and Geographic Information System in the Siwha Area (원격탐사와 지리정보시스템을 이용한 시화지구 일대의 지표환경변화와 토공량 예측연구)

  • Yang, So-Yeon;Song, Moo-Young;Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • 제9권2호
    • /
    • pp.161-176
    • /
    • 1999
  • The objectives of this study are to analyze the changes of geo-surface topography in the Siwha embankment and the Ahsan city area by the image processing of Landsat Thematic Mapper data, and to estimate the reclaimed amount of the exposed tidal flat in the Siwha area using the GIS. False color composite, Tasseled cap, NVDI(normalized difference vegetation index), and supervised classification techniques were used to analyze the distribution of sediments and the aspect of topographical variations caused by artificial human actions. The total amount of the exposed tidal flat was estimated on the basis of the database snch as aerial photography, hydrographic chart, geological map, and scheme drawing in the Siwha area. The possible excavation regions for a seawall were predicted analyzing the supervised classification image of Landsat TM data. Tasseled cap images were used to observe the distribution of sediments. The difference of the NDVI images between spring and summer seasons indicates that deciduous and coniferous forests were distributed over the whole areas. The total fill-volume of the exposed Siwha tidal flat and the fill-volume of the construction planning seawall were calculated as $581,485,354\textrm{m}^3{\;}and{\;}3,387,360\textrm{m}^3$, respectively, from the digital terrain analysis. Daebu Island, Sunkam Island, and the part of Songsan-myeon were chosen as the cut area to make the seawall, and their cut-volumes were estimated as $5,229,576\textrm{m}^3,{\;}79,227,072\textrm{m}^3,{\;}and{\;}47,026,008\textrm{m}^3$, respectively. Therefore, the cut-volume of Daebu Island alone among three areas was sufficient to make the seawall.

  • PDF

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권3호
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.

A Study on the Performance of Recycled Asphalt Pavement using Hot Recycling Plant (재생 아스팔트 포장의 공용성능 연구)

  • Kim, In-Soo;Suh, Young-Chan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제6권2호
    • /
    • pp.112-118
    • /
    • 2011
  • The recycled asphalt concrete has gotten increasing attention due to the environmental issues. The volume of reclaimed asphalt has increased significantly for last few years because of city remodeling, pavement maintenance, utility excavation, and road widening. Considering the value of reclaimed asphalt, it is rather used for the recycled asphalt concrete than it is used for fill and cover up material instead of soil. This research will be a supplements incomplete issues from existing research results and suggests the quality control guideline for recycled asphalt concrete and upcoming laws. As the first step of research, the trial construction of RAP(Recycled Asphalt Pavement) performed in expressway construction sites. These trial construction sites have been checked every years. And another construction sites studied and selected for more deeper performance check of RAP. For this checks, we used automatic pavement survey equipment and computerized analysis tools. Also, DSR(Dynamic Shear Rheometer) was used for the fatigue life calculation of binder blends(RAP and virgin binder). As a consequence of this research, the application of recycled asphalt provides good enough quality for highway construction. The preceeding literatures reviewed shows that the asphalt rejuvenator are used in many countries but that type of chemical agent are not used in Korea. By using the data of trial construction and mix design in Chongwon-Sangju construction lane, the surface and base courses consisted with the 10% and 30% rap mix asphalt section maintains good performance for up to 7 years. Through the performance check and laboratory tests(DSR), the quality control and mixture's low temperature prevention are the important factor and chemical agent necessary for increasing the fatigue life of RAP binder.

  • PDF

Seepage-induced behaviour of a circular vertical shaft (침투를 고려한 원형수직터널 거동특성 연구)

  • Kim, Do-Hoon;Lee, Kang-Hyun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제13권6호
    • /
    • pp.431-450
    • /
    • 2011
  • When a circular vertical shaft is constructed below the groundwater level, additional forces caused by groundwater flow besides horizontal effective stresses will act on the wall. The inward direction of the groundwater flow will be inclined to the vertical wall and its direction will change depending on the wall depth. In this paper, to figure out the effect of seepage forces acting on the circular vertical shaft, the slope of the inclined flow varying with the depth is divided into vertical and horizontal components to derive the coefficient of earth pressure considering the seepage pressure and to obtain the vertical stress by taking the seepage pressure into account. The control volume in this study is assumed to be the same with that of the dry ground condition within which the earth pressure is acting on the wall by the creation of the plastic zone during shaft excavation. An example study shows that the vertical stress increases by about 1.4 times and the horizontal earth pressure increases up to 2.5 times compared to the dry ground condition. The estimated values from the proposed equation considering seepage forces and the calculated values from numerical analysis with "effective stress plus seepage force" show similar values, which verifies appropriateness of the proposed equation to estimate the earth pressure under the seepage condition.

Measurement of Joint-Orientation and Monitoring of Displacement in Tunnel using 3D Laser Scanning System (3차원 레이저 스캐닝 시스템을 이용한 불연속면의 방향성 측정과 터널 변위 모니터링)

  • Shon, Ho-Woong;Oh, Seok-Hoon;Kim, Young-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • 제9권1호
    • /
    • pp.47-62
    • /
    • 2006
  • More than 70% of Korean Peninsula is consisted of mountains, so that lots of roads, rail-roads and tunnel,which play a pivotal role in the industry activity, are existed along the rock-slope and in the rock-mass. Thus,it is urgent that tegration of management system through the optimum survey and design of rock-slope excavation, proper stabilization method and database of rock-slope. However, conventional methods have shortcoming with the economy of survey time and human resources, and the overcome of difficulties of approach to the in-situ rock-slope. To overcome the limitation of conventional method, this paper proposed the development of remote measurement system using Terrestrial Laser Scanning System. The method using Terrestrial 3D Laser Scanning System, which can get 3D spatial information on the rock-slope and2)Dept. Geosystem Engineering, Kangwon National University, Korea tunnel, has an advantage of reduction of measurement time and the overcome of difficulties of approach to the in-situ rock-slope/dam/tunnel. In the case of rock-slope, through the analysis of 3D modeling of point-cloud by Terrestrial Laser Scanning System, orientation of discontinuity, roughness of joint surface, failure shape and volume were successively achieved. in the case of tunnel face, through reverse-engineering, monitoring of displacement was possible.

  • PDF

Earthquake-Resistant Design of Cantilever Retaining-Walls with Sloped Base (기초슬래브의 밑면이 경사진 캔티레바식 옹벽의 내진설계)

  • Kim, Hong Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제10권3호
    • /
    • pp.87-98
    • /
    • 1990
  • The present Study dealt with the earthquake-resistant design of cantilever retaining walls supporting cohesionless soils. With design examples of three different types of cantilever retaining walls, the factors of safety against sliding were computed at various values of horizontal acceleration coefficient and compared with each other. The horizontal inertia effect due to the weights of concrete wall itself and a portion of backfill was taken into account in the analyses, and also Mononobe-Okabe pseudo-static solution method was modified to deal with various states different from limiting equilibrium state. From the analyses of safety against sliding, it was found that a cantilever retaining wall with sloped base was the most efficient type in earthquake resistant design. It was also found that by sloping the base, the width of the base slab could be reduced, resulting in the least volume of concrete, excavation and backfill as compared to the other types of walls. In the case of a cantilever retaining wall with sloped feel, the efficiency similar to that of a wall with sloped base could be expected under static loading as well as at relatively low level of earthquake loading. However, this efficiency became vanished with the increase of horizontal acceleration coefficient, since the rate of reduction in developed earth pressures on the heel became smaller. In addition, the design charts with different soil friction angles as well as with different earthquake resistant design criteria of safety factor against sliding were presented for the design of cantilever retaining walls sith sloped base.

  • PDF

Risk Assessment of the Road Cut Slopes in Gyeoungnam based on Multiple Regression Analysis (다중회귀분석을 통한 경남 지방도로 절취사면의 안정성평가)

  • Kang, Tae-Seung;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • 제17권3호
    • /
    • pp.393-404
    • /
    • 2007
  • The purpose of this study is to capture the essentials in survey and evaluation scheme which are able to assess the hazard of a rock slope systematically. Statistical analysis are performed on slope instability parameters related to failure of the rock slope. As the slope instability parameters, twelve survey items are considered such as tension crack, surface deformation, deformation of retaining structures, volume of existing failures, angles between strike of discontinuity and strike of cut slope face, angles between dip of discontinuity and dip of cut slope face, discontinuity condition, cut slope angle, rainfall or ground water level, excavation condition, drainage condition, reinforcement. A total of 233 road cut slopes located in Gyeongnam were considered. The stability of the road cut slopes were evaluated by estimating the slope instability index(SII) and corresponding stability rank. 126 rock slopes were selected to analyze statistical relation between SII and slope instability parameters. The multiple regression analysis was applied to derive statistical models which are able to predict the SII and corresponding slope stability rank. Also, its applicability was explored to predict the slope failures using the variables of slope instability parameters. The results obtained in this study clearly show that the methodology given in this paper have strong capabilities to evaluate the failures of the road cut slope effectively.

Archaeomagnetic Study of Historic Sites in Chungcheong Region Regional Difference of Geomagnetic Field and Issues on Reliability of Data (충청지역 유적에 대한 고고지자기학적 연구 지자기의 지역적인 차이와 데이터의 신뢰도 문제를 중심으로)

  • Sung, Hyong Mi
    • Korean Journal of Heritage: History & Science
    • /
    • 제41권1호
    • /
    • pp.21-33
    • /
    • 2008
  • In this study, the researcher examined archaeomagnetic secular variation of Chungcheong Region through measured data of archaeomagnet obtained from 34 relics, which discovered in the baked earth from varied historic sites within the region. Furthermore, the researcher closely reviewed regional differences of geomagnetic field in the domestic territory. Reviewing the comparison between the measured data of archaeomagnet in Chungcheong Region and the archaeomagnetic secular variation of Japan, which has difference in distance, it reveals a noticeable change in declination by tilting more than 10 degree toward East in the year of about A.D. 300, although the feature of whole variation is quite similar. In other period of times, it was confirmed that the regional differences of geomagnetic field in which the magnetic dip became deeper to some degree, and the declination was tilted westward a little bit. Such patterns do not differ significantly from the pattern of entire archaeomagnetic secular variation of our country, and even in the direct comparison to the data of Chungcheong Region, the distinct regional difference in both periods before and after Christian era was not confirmed. The fact may become clearer that, when the volume of the measured data of archaeomagnet increases further, and when more data connected with varied time period are filled, the problem such as deviation of the measurement period of archaeomagnet caused by the regional difference of geomagnetic field would not be worrisome issue, especially in Korean territory, judging from the measured data of archaeomagnet of historic relics in Chungcheong Region. Besides, as great efforts are being exerted in order to get the most reliable measured data as much as possible in taking both samples and measurement, it is thought that there would be no problem not only in the issue of deviation of the measurement period involving with the measured data of archeomagnet, but also in the aspect of reliability of data.

Strategy for South Korea-Vietnamese Military Cooperation in the field of defense (한(韓)·베트남 군사협력 추진전략 : 방산분야를 중심으로)

  • Lee, Kang Kyong
    • Convergence Security Journal
    • /
    • 제18권3호
    • /
    • pp.105-112
    • /
    • 2018
  • South Korea and Vietnam have been engaged in extensive political, economic and cultural exchanges since the establishment of diplomaticties in 1992. In March 2018, Moon Jae-in, President of South Korea, made an official visit to Vietnam, a key partner of the New Southern Policy and discussed comprehensive cooperation measures, including expanding trade volume and measures to establish peace on the Korean Peninsula. At the defense ministers' meeting held in April 2018, the two countries signed a joint defense and defense cooperation statement, which included promotion of maritime security, defense cooperation, UN PKO activities, excavation of remains, and joint military cooperation. Currently, Vietnam is facing territorial disputes with China over the South China Sea, and is stepping up military modernization and military buildup to counter this. In particular, Vietnam is strengthening its external military cooperation beyond ideology with the U.S., Russia, India and France to strengthen its maritime power. Against this backdrop, the bilateral cooperation between South Korea and Vietnam needs to expand beyond the traditional economic and cultural exchanges to military cooperation. The study aims to review the relationship between South Korea and Vietnam on the 26th anniversary of the normalization of diplomaticties and seek ways to develop military cooperation with Vietnam, which has grown to the next China. To that end, it analyzed Vietnam's security environment and military strategy and presented strategies for promoting military cooperation focusing on defense areas.

  • PDF

Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System (CANDU 사용후핵연료 처분시스템 효율향상 개념 도출)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kook, Dong-Hak;Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제9권3호
    • /
    • pp.169-179
    • /
    • 2011
  • There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over $100^{\circ}C$ were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.