• 제목/요약/키워드: Excavation Method

Search Result 1,058, Processing Time 0.026 seconds

Estimation of Soil Conversion Factor for the Non-compacted Soil in Embankment (비다짐 성토지반의 합리적 토량평가를 위한 토량환산계수 추정)

  • Oh, Sewook;Lee, Bongjik;Kim, Hongseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.11
    • /
    • pp.13-18
    • /
    • 2017
  • In a banking process for construction of a complex, non-compaction construction has been applied in most sites, which is a method that soils are compacted by the equipment load without being compacted separately. However, there are no specific descriptions in the construction manual or specifications, so it is unclear to evaluate the excavation volume. Hence, this study is a basic study to compare the soil conversion factor at a design stage and the actual soil conversion factor of a banking ground under a non-compaction condition in order to examine the feasibility in constructing the ground for construction of the complex and to examine appropriateness of the earth work in the site by conducting an indoor, field, and load-settlement test and proposing a reasonable soil conversion factor. Under the non-compaction condition, the soil conversion factor C is set to be 1.0 at the design stage, but the result of the field test was 0.86 which is smaller than the value at the design stage. It was expected that this result would increase the banking volume, and the construction result actually showed a difference in the banking volume. Therefore, for the baking ground under the non-compaction condition, it is necessary to apply the value C suitable for the site condition after performing test by considering the site's condition and the banking height.

Development of an Application System for Efficient Management of Underground Water Supply Facility - Pilot Study in Chonju City - (상수도 지하시설물의 효율적 관리를 위한 응용시스템 개발 -전주시를 대상으로-)

  • 오권호;진철하;이근상;정승현;조기성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.111-120
    • /
    • 2000
  • Water, waste, electric and gas facilities are urban based facilities that needed in our life and are often located in underground. Therefore, underground facilities are more difficult to manage efficiently than ground facilities. It is needed to carry out survey/probe into underground facilities and to build database in order to prevent city-misfortunes being occurred because of negligent management and in order to minimize budget-waste and a traffic jam according to repetition of road excavation constructions. Also, the development of application system is required to manage efficiently underground facility. Chonju city has launched underground water supply facility computerizing project as a part of National Geographic Information System project until December 1998 and executed survey/probe into 402.89 km water supply that is 80 mm up inside central town area 39.6 $km^2$. Also, chonju city built database into 537 km water supply that is 80 mm below based on water supply card without other survey/probe works. Also, existing work process each department is changed into GIS applied work process and underground water supply facility management system is developed by its work process basis. Water supply underground facility management system that is developed is composed of sub-system like base-map management, water supply inspect, water supply management and water supply inquiry, construction work management, administration management and map management. This research presents the procedure and method of underground water supply facility survey/probe and problem being occurred during survey/probe procedure and also show the functions of each sub-systems composing underground water supply facility management system.

  • PDF

Properties of Disconitinuity for the Seoul Granite in the Northeastern Part of Seoul City (서울시 북동부의 서울화강암에 대한 불연속면의 특성)

  • 정상원;정상용
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.167-178
    • /
    • 2002
  • Properties of discontinuity for Seoul Granite in northeastern part of Seoul City were analyzed by dividing structural domains into Surak and Bulam Mtn. areas. Important parameters measured among several engineering properties of a rock during tunnel excavation and road construction are as follows: 1) Orientation of joint, 2) joint spacing, 3) joint density, and 4) uniaxial compressive strength. Orientation, spacing, and density of joints can be directly measured during field investigation using scanline survey, circle-inventory method, and window survey. Uniaxial compressive strength of the rock was calculated by a simple correlation equation although it is originally necessary to prepare core samples in measuring it. Major orientations of joints measured from both areas are 3 sets of joints with different orientations. In other words, they are 2 sets of orthogonal joint and 1 set of sheet joint that is dipping at low angle, and have very similar orientations in both areas. Joint densities in both areas range from 0.039 and 0.066/cm, and average joint length are between 1.30 and 4.52m. Average joint spacing also has values from 10.3cm up to 59.6cm, and shows significant difference along specific orientation of scanlines measured. Values of uniaxial compressive strength calculated on the basis of Schmidt hammer rebound values range from 217 to 335 MPa, which indicates very strong rock type by classification of wall strength.

Evaluation of Land Subsidence Risk Depending on Grain Size and Verification using Numerical Analysis (지반입도조건에 따른 지반함몰 가능성 평가 및 수치해석적 검증)

  • Lee, Jong-Hyun;Jin, Hyun-Sik;Baek, Yong;Yoon, Hyeong-Suk
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.133-141
    • /
    • 2017
  • In this study, filter conditions by difference in grading between core material and filter material used for dam construction was applied as evaluation condition for surrounding ground conditions near excavation site in a bid to identify the risk of land subsidence resulting from the erosion of soil particles. To that end, filter conditions proposed for the test was evaluated and the risk of land subsidence depending on grain size conditions was also evaluated using the filter conditions developed by COE. Consequently, evaluation diagram that can be used to determine the risk of land subsidence using grain size conditions obtained from ground investigation data was developed, which is expected to help evaluate the possibility of land subsidence depending on changes to the stratum. To simulate the particle flow process, PFC3D program was used. It's not only intended to determine the land subsidence pattern caused by falling ground water level but also predict and evaluate the land subsidence caused by soil erosion using grain size condition which can be verified by numerical analysis approach.

Case Study about the Ground Characteristics Analysis of Tunnel Face Fault Fractured Zone (터널막장 단층파쇄대의 지반특성 분석에 대한 사례연구)

  • Min Kyoung-Nam;Lim Kwang-Su;Jang Chang-Sik;Lim Dae-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.111-118
    • /
    • 2005
  • The area of investigation belongs to Okchon metamorphic zone and the fault fractured zone runs parallel to the tunnel direction. It causes the independent decline of tunnel face and the slackness of the tunnel surrounding base so, after all, the severe displacement has occurred within the tunnel. Accordingly, the TSP(Tunnel Seismic Prediction) survey has been performed to investigate the extent of fault fractured zone and to analize its characteristics. Also, we have analized the behavior causes by performing the tunnel face mapping and drilling investigation, and confirmed the position and scale of geological anomaly area and front fractured zone which influences tunnel excavation and supporting. Collected data analyzed ground layer condition through 3 dimensional modeling. Several variables included in the modeling were analyzed by geostastistics. The analysis of the modeling data shows that the belt of weathering by fault fractured zone is developing on the basis of the right side of tunnel and that is decreasing to the left side. The fault fractured zone was confirmed that it has strike, $N0\~5^{\circ}E$ dip NW, and it is consisted of large-scale fractured zone including several anomalies. The severe displacement in tunnel is probably caused by asymmetrical load that n generated by the crossing of discontinuity and the rock strength imbalance of tunnel's both side by fault fractured zone, and judge that need tunnel reinforcement method of grouting etc.

A Numerical Study on the Progressive Brittle Failure of Rock Mass Due to Overstress (과지압으로 인한 암반의 점진적 취성파괴 과정의 수치해석적 연구)

  • Choi Young-Tae;Lee Dae-Hyuck;Lee Hee-Suk;Kim Jin-A;Lee Du-Hwa;You Kwang-Ho;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.259-276
    • /
    • 2006
  • In rock mass subject to high in-situ stresses, the failure process of rock is dominated by the stress-induced fractures growing parallel to the excavation boundary. When the ratio of in situ stresses compared to rock strength is greater than a certain value, progressive brittle failure which is characterized by popping and spatting of rock debris occurs due to stress concentration. Traditional constitutive model like Mohr-Coulomb usually assume that the normal stress dependent frictional strength component and the cohesion strength component are constant, therefore modelling progressive brittle failure will be very difficult. In this study, a series of numerical analyses were conducted for surrounding rock mass near crude oil storage cavern using CW-FS model which was known to be efficient for modelling brittle failure and the results were compared with those of linear Mohr-Coulomb model. Further analyses were performed by varying plastic shear strain limits on cohesion and internal friction angle to find the proper values which yield the matching result with the observed failure in the oil storage caverns. The obtained results showed that CW-FS model could be a proper method to characterize essential behavior of progressive brittle failure in competent rock mass.

A study on the optimal reinforcement area for excavation of a small cross-section shield TBM tunnel in fault fracture zone through parameter analysis (매개변수 분석을 통한 단층파쇄대의 소단면 쉴드 TBM 터널 굴착 시 최적 보강영역 연구)

  • Kang, Byung-Yun;Park, Hyung Keun;Cha, Jae-Hoon;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.261-275
    • /
    • 2020
  • When excavating a small cross-section tunnel in a fault fracture zone using the shield TBM method, there is a high possibility of excessive convergence and collapse. Appropriate ground reinforcement is required to minimize construction cost loss and trouble due to a fault fracture zone. In this study, the optimal reinforcement area was suggested and the surrounding ground behavior was investigated through numerical analysis using MIDAS GTS NX (Ver. 280). For the parameters, the width of the fault fracture zone, the existence of fault gouge, and the groundwater level and depth of cover were applied. As a result, when there is not fault gouge, the convergence and ground settlement are satisfied the standard when applying ground reinforcement by up to 0.5D. And, due to the high permeability coefficient, it is judged that it is necessary to apply 0.5D reinforcement. There is a fault gouge, it was possible to secure stability when applying ground reinforcement between the entire fault fracture zone from the top of the tunnel to 0.5D. And, because the groundwater discharge occurred within the standard value due to the fault gouge, reinforcement was unnecessary.

Numerical analysis on stability of express railway tunnel portal

  • Zhou, Xiaojun;Hu, Hongyun;Jiang, Bo;Zhou, Yuefeng;Zhu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.1-20
    • /
    • 2016
  • On the basis of the geological conditions of high and steep mountainous slope on which an exit portal of an express railway tunnel with a bridge-tunnel combination is to be built, the composite structure of the exit portal with a bridge abutment of the bridge-tunnel combination is presented and the stability of the slope on which the express railway portal is to be built is analyzed using three dimensional (3D) numerical simulation in the paper. Comparison of the practicability for the reinforcement of slope with in-situ bored piles and diaphragm walls are performed so as to enhance the stability of the high and steep slope. The safety factor of the slope due to rockmass excavation both inside the exit portal and beneath the bridge abutment of the bridge-tunnel combination has been also derived using strength reduction technique. The obtained results show that post tunnel portal is a preferred structure to fit high and steep slope, and the surrounding rock around the exit portal of the tunnel on the high and steep mountainous slope remains stable when rockmass is excavated both from the inside of the exit portal and underneath the bridge abutment after the slope is reinforced with both bored piles and diaphragm walls. The stability of the high and steep slope is principally dominated by the shear stress state of the rockmass at the toe of the slope; the procedure of excavating rockmass in the foundation pit of the bridge abutment does not obviously affect the slope stability. In-situ bored piles are more effective in controlling the deformation of the abutment foundation pit in comparison with diaphragm walls and are used as a preferred retaining structure to uphold the stability of slope in respect of the lesser time, easier procedure and lower cost in the construction of the exit portal with bridge-tunnel combination on the high and steep mountainous slope. The results obtained from the numerical analysis in the paper can be used to guide the structural design and construction of express railway tunnel portal with bridge-tunnel combination on high and abrupt mountainous slope under similar situations.

Theoretical and experimental studies on influence of electrode variations in electrical resistivity survey for tunnel ahead prediction (터널 굴착면 전방조사를 위한 전기비저항 탐사에서 전극의 변화가 미치는 영향에 대한 이론 및 실험연구)

  • Hong, Chang-Ho;Chong, Song-Hun;Hong, Eun-Soo;Cho, Gye-Chun;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.267-278
    • /
    • 2019
  • Variety of tunnel ahead prediction methods have been performed for safe tunnel construction during tunnel excavation. Pole-pole array among the electrical resistivity survey, which is one of the tunnel ahead prediction method, has been utilized to predict water-bearing sediments or weak zone located within 5 times of tunnel diameter. One of the most important processes is the estimation of virgin ground resistivity and it can be obtained from the following process: 1) calculation of contact area between the electrodes and the medium, and 2) assumption of the electrodes as equivalent spherical electrodes which have a same surface area with the electrodes. This assumption is valid in a small contact area and sufficient distance between the electrodes. Since the measured resistance, in general, varies with the electrode size, shape, and distance between the electrodes, it is necessary to evaluate the influence of these factors. In this study, theoretical equations were derived and experimental tests were conducted considering the electrode size, shape, and distance of cylindrical electrodes which is the most commonly utilized electrode shape. Through this theoretical and experimental study, it is known that one should be careful to use the assumption of the equivalent half-spherical electrode with large ratio between the penetrated depth and radius of the cylindrical electrode, as the error may get larger.

A Folkloric Demonstration on 'Sam-gama' The Field Report on the Construction, Structure and Utilization of 'Sam-gama' ('삼가마' 유구에 대한 민속학적논증 '삼가마'(삼굿)의 축조와 구조, 운용에 대한 현지조사 보고)

  • Lim, Hyoung Jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.4
    • /
    • pp.4-19
    • /
    • 2009
  • Though admitting that, in light of the recent archaeological trend, the excavation on relics of Sam-gama (a sort of kiln steaming the hemp) is increasingly reported, little efforts by far have been made not only to restore its traditional structure design but also to research hardly the change of hemp-steaming technologies in ages. In this regard, this paper shows the exploration of structural method and design as well as operability with regard to Sam-gut, traditional hemp-processing equipment that was recently reconstructed in Jungsun, Kangwon Province. Samgut, generally positioned at the waterside area, is an traditional device for steaming hemp to get bast fibers from the raw material of hemp, principally consisting of HWA-JIP(fire-place) to obtain steams by feeding fire ad Mong-got(boiling chamber) to make the hemp steamed after stacking. More specifically, thick round-logs were piled at the bottom of Hwajip prior to stacking stones around its circumferential area. When the timber positioned below gets burned with high temperature to heat stones existing in the upper side, waters then poured onto it after laying a bundle of grass and soil up to the boiled stones. If so, there generates hot vapor, which is conveyed to Monggot to steam the hemp. Functionally, it is of outstanding importance that Samgut is capable of producing high-temperature water vapors instantaneously under the intensive manpower, thus being constructed achievable for those purposes. The Samgut made by digging the ground is an instant facility that is closed after use. The remains, which were used to generate higher thermal power for steaming hemp, make it hard to excavate the historic traits because there left little vestiges in the soil, which means keen attention must be paid to find out the trace of Smgama relics. Future research stall be focused on collection of broader data regarding Samgut including technological review in extracting bas fibers from the hemp.