• Title/Summary/Keyword: Ex-core Neutron Signal

Search Result 8, Processing Time 0.017 seconds

Analysis of fluctuations in ex-core neutron detector signal in Krško NPP during an earthquake

  • Tanja Goricanec;Andrej Kavcic;Marjan Kromar;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.575-600
    • /
    • 2024
  • During an earthquake on December 29th 2020, the Krško NPP automatically shutdown due to the trigger of the negative neutron flux rate signal on the power range nuclear instrumentation. From the time course of the detector signal, it can be concluded that the fluctuation in the detector signal may have been caused by the mechanical movement of the ex-core neutron detectors or the pressure vessel components rather than the actual change in reactor power. The objective of the analysis was to evaluate the sensitivity of the neutron flux at the ex-core detector position, if the detector is moved in the radial or axial direction. In addition, the effect of the core barrel movement and core inside the baffle movement in the radial direction were analysed. The analysis is complemented by the calculation of the thermal and total neutron flux gradient in radial, axial and azimuthal directions. The Monte Carlo particle transport code MCNP was used to study the changes in the response of the ex-core detector for the above-mentioned scenarios. Power and intermediate-range detectors were analysed separately, because they are designed differently, positioned at different locations, and have different response characteristics. It was found that the movement of the power range ex-core detector has a negligible effect on the value of the thermal neutron flux in the active part of the detector. However, the radial movement of the intermediate-range detector by 5 cm results in 7%-8% change in the thermal neutron flux in the active part of the intermediate-range detector. The analysis continued with an evaluation of the effects of moving the entire core barrel on the ex-core detector response. It was estimated that the 2 mm core barrel radial oscillation results in ~4% deviation in the power and intermediate-range detector signal. The movement of the reactor core inside baffle can contribute ~6% deviation in the ex-core neutron detector signal. The analysis showed that the mechanical movement of ex-core neutron detectors cannot explain the fluctuations in the ex-core detector signal. However, combined core barrel and reactor core inside baffle oscillations could be a probable reason for the observed fluctuations in the ex-core detector signal during an earthquake.

Phase Separation Algorithm for Ex-core Neutron Signal Analysis

  • Jung, Seung-Ho;Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.399-405
    • /
    • 1997
  • In this study a new phase separated spectral analysis algorithm is proposed to identify CSB vibration mode directly from ex-core neutron signals. Ex-core neutron signals can be decomposed into the global, core support barrel (CSB) beam mode, and CSB shell mode components by the new phase separation algorithm based on the characteristics of Fourier transform. By using the proposed algorithm and the conventional spectral analysis the vibration mode of the CSB and the fuel assembly of Ulchin-1 NPP were identified from measured ex-core neutron signals.

  • PDF

STUDY OF CORE SUPPORT BARREL VIBRATION MONITORING USING EX-CORE NEUTRON NOISE ANALYSIS AND FUZZY LOGIC ALGORITHM

  • CHRISTIAN, ROBBY;SONG, SEON HO;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.165-175
    • /
    • 2015
  • The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

Study on analog-based ex-core neutron flux monitoring systems of Korean nuclear power plants for digitization

  • Kim, Young Baik;Vista, Felipe P. IV;Chong, Kil To
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2237-2250
    • /
    • 2021
  • The analog-based Ex-core Neutron Flux Monitoring System (ENFMS) in Korean Nuclear Power Plants (NPPs) has been performing its intended functions successfully for a long time. On the other hand, the primary concern with the extended use of analog systems is the aging effect, such as mechanical failures, environmental degradation, and obsolescence. The transition to a digital-based Man-Machine Interface Systems (MMIS) in Korea and other countries has been accelerating, but some systems are still analog-based IC systems, such as the ENFMS in APR1400 NPPs. Digitalized ENFMS can become a reality using computers and microprocessors owing to the progress in digital electronics and information technology. This paper presents the result of the first phase of the research on the digitalization of the ENFMS signal processing electronics for NPPs operated or produced in Korea. It has two main parts: (1) review engineering bases of ex-core neutron flux monitoring system, including nuclear engineering, instrumentation techniques, and analog and digital signal processing techniques, and (2) analysis of analog signal processing electronics of ENFMS for OPR1000 and APR1400 power plants. They are prerequisite to the second phase of the research which is the detailed implementation of the digitalization.

Vibration Characteristics of Reactor Internals of Ulchin-1 Nuclear Power Plant (울진 1호 원자력발전소 원자로 내부구조물의 진동 특성)

  • 정승호;김승호
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.129-137
    • /
    • 2000
  • This paper presents the vibration characteristics of reactor internals of Ulchin-1 nuclear power plant, which are identified by using the conventional and the phase separated spectral analysis of the pressure vessel acceleration and ex-core neutron signals. These identified vibration characteristics show excellent agreement with those of Tricastin-1 nuclear power plant that is the prototype of Ulchin-1. And the trend of ex-core neutron signals has been observed during one reactor cycle. These results can be used as basic data for fault diagnosis of reactor internals.

  • PDF

Neutron Noise Analysis for PWR Core Motion Monitoring (중성자 잡음해석에 의한 PWR 노심 운동상태 감시)

  • Yun, Won-Young;Koh, Byung-Jun;Park, In-Yong;No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.253-264
    • /
    • 1988
  • Our experience of neutron noise analysis in French-type 900 MWe pressurized water reactor (PWR) is presented. Neutron noise analysis is based on the technique of interpreting the signal fluctuations of ex-core detectors caused by core reactivity changes and neutron attenuation due to lateral core motion. It also provides advantages over deterministic dynamic-testing techniques because existing plant instrumentation can be utilized and normal operation of the plant is not disturbed. The data of this paper were obtained in the ULJIN unit 1 reactor during the start-up test period and the statistical descriptors, useful for our purpose, are power spectral density (PSD), coherence function (CF), and phase difference between detectors. It is found that core support barrel (CSB) motions induced by coolant flow forces and pressure pulsations in a reactor vessel were indentified around 8 Hz of frequency.

  • PDF

Development of Automatic Reactor Internal Vibration Monitoring System Using Fuzzy Peak Detection and Vibration Mode Decision Method

  • Kang, Hyun-Gook;Seong, Poong-Hyun;Park, Heui-Youn;Lee, Cheol-Kwon;Koo, In-Soo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.8-16
    • /
    • 1998
  • In this work a method to detect the vibrational peak and to decide the vibrational mode of detected peak for core internal vibration monitoring system which is particularly concerned on the core support barrel (CSB) and fuel assemblies is developed. Flow induced vibration and aging process in the reactor internals cause unsoundness of the internal structure. In order to monitor the vibrational status of core internal, signals from the ex-core neutron detectors are transformed into frequency domain. By analyzing transformed frequency domain signal, an analyst can acquire the information on the vibrational characteristics of the structures, i.e., vibration frequencies of each component, vibrational level, modes of vibration, and the causes of the abnormal vibration, if any. This study is focused on the development of the automated monitoring system. Several methods are surveyed to define the peaks in power spectrum and fuzzy theory is used to automatic detection of the vibrational peaks. Fuzzy algorithm is adopted to define the modes of vibration using the peak values from fuzzy peak recognition, phase spectrum, and coherence spectrum.

  • PDF

Finite element analysis of reactor internals with structural faults (기계적 결함이 있는 원자로 내부구조물의 유한요소해석)

  • Jung, Seung-Ho;Park, Jin-Seok;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1270-1275
    • /
    • 1997
  • This paper concerns with the finite element analysis of reactor internals with structural faults. For investigating the influence of hold-down spring faults on dynamic characteristics of CSB (core support barrel), reactor internals of Ulchin-1 nuclear power plant are modeled using finite element method and simulated with artificial defects on the hold-down springs. To prove the validity of the finite element models, the calculated natural frequencies of CSB in normal state are compared with those from the measurement results, which shows good agreement. According to results of finite element analysis, CSB beam mode natural frequency decreases by 4.5% in the case of 10% partial relaxation of hold-down springs, and decreases by 18.4% in the case of 20%. The range of shell mode natural frequency change is within 5.3%.