• Title/Summary/Keyword: Evolutionary optimization technique

Search Result 71, Processing Time 0.031 seconds

Evolutionary Optimization Design Technique for Control of Solid-Fluid Coupled Force (고체-유체 연성력 제어를 위한 진화적 최적설계)

  • Kim H.S.;Lee Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.503-506
    • /
    • 2005
  • In this study, optimization design technique for control of solid-fluid coupled force (sloshing) using evolutionary method is suggested. Artificial neural networks(ANN) and genetic algorithm(GA) is employed as evolutionary optimization method. The ANN is used to analysis of the sloshing and the genetic algorithm is adopted as an optimization algorithm. In the creation of ANN learning data, the design of experiments is adopted to higher performance of the ANN learning using minimum learning data and ALE(Arbitrary Lagrangian Eulerian) numerical method is used to obtain the sloshing analysis results. The proposed optimization technique is applied to the minimization of sloshing of the water in the tank lorry with baffles under 2 second lane change.

  • PDF

Sloshing Reduction Optimization of Storage Tank Using Evolutionary Method (진화적 기법을 이용한 유체저장탱크의 슬로싱 저감 최적화)

  • 김현수;이영신;김승중;김영완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.410-415
    • /
    • 2004
  • The oscillation of the fluid caused by external forces is call ed sloshing, which occurs in moving vehicles with contained liquid masses, such as trucks, railroad cars, aircraft, and liquid rocket. This sloshing effect could be a severe problem in vehicle stability and control. In this study, the optimization design technique for reduction of the sloshing using evolutionary method is suggested. Two evolutionary methods are employed, respectively the artificial neural network(ANN) and genetic algorithm. An artificial neural network is used for the analysis of sloshing and genetic algorithm is adopted as optimization algorithm. As a result of optimization design, the optimized size and location of the baffle is presented

  • PDF

A new evolutionary programming technique (여러 부집단을 이용한 새로운 진화 프로그래밍 기법)

  • 임종화;황찬식;한대현;최두현
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.893-896
    • /
    • 1998
  • A new evolutionary programming technique using multiple subpopulations with completely differnt evolution mechanisms is propsed to solve the optimization problems. Three subpopulations, each has different evolution charcteristics and uses different EP algorithms such as SAEP, AEP and FEP, are cooperating with synergy effect in which it increases the possibility to quickly find the global optimum of continuous optimization problems. Subpopulations evolve in differnt manner and the interaction among these leads to global minimum quickly.

  • PDF

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화: 진화론적 방법)

  • Kim Dong-Won;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.424-433
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화 : 진화론적 방법)

  • Kim, Dong Won;Park, Gwi Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.424-424
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

A study on the Evolutionary Optimization of Cable Area of the Cable-Stayed Bridge (사장교 케이블 단면적의 점진적 최적화에 관한 연구)

  • 최창근;이태열;홍현석;김은성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.113-120
    • /
    • 1996
  • This study presents the optimization technique to determine the cable areas of the cable-stayed bridge. The optimization method presented in this paper is based on an evolutionary procedure, in which the area of high stressed cable is increased step-by-step until an optimal area of the cable is obtained. A comparison between the maximum values of the present method and those of the cable-stayed bridge that has the same cable area shows the advantages of the present method.

  • PDF

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.

Crack Identification Using Evolutionary Algorithms in Parallel Computing Environment (병렬 환경하의 진화 이론을 이용한 결함인식)

  • Sim, Mun-Bo;Seo, Myeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1806-1813
    • /
    • 2002
  • It is well known that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a classical optimization technique was adopted by previous researchers. That technique overcame the difficulty of finding the intersection point of the superposed contours that correspond to the eigenfrequency caused by the crack presence. However, it is hard to select a trial solution initially for optimization because the defined objective function is heavily multimodal. A method is presented in this paper, which uses continuous evolutionary algorithms(CEAs). CEAs are effective for solving inverse problems and implemented on PC clusters to shorten calculation time. With finite element model of the structure to calculate eigenfrequencies, it is possible to formulate the inverse problem in optimization format. CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising with high parallel efficiency over about 94%.

A Novel Dynamic Optimization Technique for Finding Optimal Trust Weights in Cloud

  • Prasad, Aluri V.H. Sai;Rajkumar, Ganapavarapu V.S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2060-2073
    • /
    • 2022
  • Cloud Computing permits users to access vast amounts of services of computing power in a virtualized environment. Providing secure services is essential. There are several problems to real-world optimization that are dynamic which means they tend to change over time. For these types of issues, the goal is not always to identify one optimum but to keep continuously adapting to the solution according to the change in the environment. The problem of scheduling in Cloud where new tasks keep coming over time is unique in terms of dynamic optimization problems. Until now, there has been a large majority of research made on the application of various Evolutionary Algorithms (EAs) to address the issues of dynamic optimization, with the focus on the maintenance of population diversity to ensure the flexibility for adapting to the changes in the environment. Generally, trust refers to the confidence or assurance in a set of entities that assure the security of data. In this work, a dynamic optimization technique is proposed to find an optimal trust weights in cloud during scheduling.

Observer-Teacher-Learner-Based Optimization: An enhanced meta-heuristic for structural sizing design

  • Shahrouzi, Mohsen;Aghabaglou, Mahdi;Rafiee, Fataneh
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.537-550
    • /
    • 2017
  • Structural sizing is a rewarding task due to its non-convex constrained nature in the design space. In order to provide both global exploration and proper search refinement, a hybrid method is developed here based on outstanding features of Evolutionary Computing and Teaching-Learning-Based Optimization. The new method introduces an observer phase for memory exploitation in addition to vector-sum movements in the original teacher and learner phases. Proper integer coding is suited and applied for structural size optimization together with a fly-to-boundary technique and an elitism strategy. Performance of the proposed method is further evaluated treating a number of truss examples compared with teaching-learning-based optimization. The results show enhanced capability of the method in efficient and stable convergence toward the optimum and effective capturing of high quality solutions in discrete structural sizing problems.