• Title/Summary/Keyword: Evolutionary method

Search Result 586, Processing Time 0.029 seconds

Design of Fuzzy Controller Using Parasitic Co-evolutionary Algorithm (기생적 공진화 알고리즘을 이용한 퍼지 제어기 설계)

  • 심귀보;변광섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1071-1076
    • /
    • 2004
  • It is a fuzzy controller that it is the most used method in the control of non-linear system. The most important part in the fuzzy controller is a design of fuzzy rules. Many algorithm that design fuzzy rules have proposed. And attention to the evolutionary computation is increasing in the recent days. Among them, the co-evolutionary algorithm is used in the design of optimal fuzzy rule. This paper takes advantage of a schema co-evolutionary algorithm. In order to verify the efficiency of the schema co-evolutionary algorithm, a fuzzy controller for the mobile robot control is designed by the schema co-evolutionary algorithm and it is compared with other parasitic co-evolutionary algorithm such as a virus-evolutionary genetic algorithm and a co-evolutionary method of Handa.

Realtime Evolutionary Learning of Mobile Robot Behaviors (이동 로봇 행위의 실시간 진화)

  • Lee, Jae-Gu;Shim, In-Bo;Yoon, Joong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.816-821
    • /
    • 2003
  • Researchers have utilized artificial evolution techniques and learning techniques for studying the interactions between learning and evolution. Adaptation in dynamic environments gains a significant advantage by combining evolution and learning. We propose an on-line, realtime evolutionary learning mechanism to determine the structure and the synaptic weights of a neural network controller for mobile robot navigations. We support our method, based on (1+1) evolutionary strategy which produces changes during the lifetime of an individual to increase the adaptability of the individual itself, with a set of experiments on evolutionary neural controller for physical robots behaviors. We investigate the effects of learning in evolutionary process by comparing the performance of the proposed realtime evolutionary learning method with that of evolutionary method only. Also, we investigate an interactive evolutionary algorithm to overcome the difficulties in evaluating complicated tasks.

  • PDF

Displacement prediction in geotechnical engineering based on evolutionary neural network

  • Gao, Wei;He, T.Y.
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.845-860
    • /
    • 2017
  • It is very important to study displacement prediction in geotechnical engineering. Nowadays, the grey system method, time series analysis method and artificial neural network method are three main methods. Based on the brief introduction, the three methods are analyzed comprehensively. Their merits and demerits, applied ranges are revealed. To solve the shortcomings of the artificial neural network method, a new prediction method based on new evolutionary neural network is proposed. Finally, through two real engineering applications, the analysis of three main methods and the new evolutionary neural network method all have been verified. The results show that, the grey system method is a kind of exponential approximation to displacement sequence, and time series analysis is linear autoregression approximation, while artificial neural network is nonlinear autoregression approximation. Thus, the grey system method can suitably analyze the sequence, which has the exponential law, the time series method can suitably analyze the random sequence and the neural network method almostly can be applied in any sequences. Moreover, the prediction results of new evolutionary neural network method is the best, and its approximation sequence and the generalization prediction sequence are all coincided with the real displacement sequence well. Thus, the new evolutionary neural network method is an acceptable method to predict the measurement displacements of geotechnical engineering.

EP Based PSO Method for Solving Multi Area Unit Commitment Problem with Import and Export Constraints

  • Venkatesan, K.;Selvakumar, G.;Rajan, C. Christober Asir
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.415-422
    • /
    • 2014
  • This paper presents a new approach to solve the multi area unit commitment problem (MAUCP) using an evolutionary programming based particle swarm optimization (EPPSO) method. The objective of this paper is to determine the optimal or near optimal commitment schedule for generating units located in multiple areas that are interconnected via tie lines. The evolutionary programming based particle swarm optimization method is used to solve multi area unit commitment problem, allocated generation for each area and find the operating cost of generation for each hour. Joint operation of generation resources can result in significant operational cost savings. Power transfer between the areas through the tie lines depends upon the operating cost of generation at each hour and tie line transfer limits. Case study of four areas with different load pattern each containing 7 units (NTPS) and 26 units connected via tie lines have been taken for analysis. Numerical results showed comparing the operating cost using evolutionary programming-based particle swarm optimization method with conventional dynamic programming (DP), evolutionary programming (EP), and particle swarm optimization (PSO) method. Experimental results show that the application of this evolutionary programming based particle swarm optimization method has the potential to solve multi area unit commitment problem with lesser computation time.

A Study on the Shape Optimization of a Cutout Using Evolutionary Structural Optimization Method (진화 구조 최적화 기법을 이용한 개구부의 형상 최적화에 관한 연구)

  • 류충현;이영신
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.369-372
    • /
    • 2000
  • ESO(Evolutionary Structural Optimization) method is known that elements involved low stress value are removed from the previous model or that elements are added around elements involved high stress level on it and then the optimized model is obtained with required weight. Rejection ratio/addition ratio and evolutionary ratio are predefined and elements having lower/higher stress than reference stress, which average Mises stress on edge elements times rejection ratio, are deleted/added. In this study, when the plate having a cutout is subjected various in-plane load, a cutout shape is optimized using ESO method. ANSYS is used to analyse a finite element model and optimization procedure is made by APDL (ANSYS Parametric Design Language). ESO method is useful in rather than a complex structure optimization as well as a cutout shape optimization.

  • PDF

Evolutionary Learning of Mobile Robot Behaviors (이동 로봇 행위의 진화)

  • 이재구;심인보;윤중선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1105-1108
    • /
    • 2003
  • Adaptation in dynamic environments gains a significant advantage by combining evolution and learning. We propose an on-line, realtime evolutionary learning mechanism to determine the structure and the synaptic weights of a neural network controller for mobile robot navigations. We support our method, based on (1+1) evolutionary strategy, which produces changes during the lifetime of an individual to increase the adaptability of the individual itself, with a set of experiments on evolutionary neural controller for physical robots behaviors.

  • PDF

A Study on an Artificial Neural Network Design using Evolutionary Programming (진화 프로그래밍 기법을 이용한 신경망의 자동설계에 관한 연구)

  • 강신준;고택범;우천희;이덕규;우광방
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.281-287
    • /
    • 1999
  • In this paper, a design method based on evolutionary programming for feedforward neural networks which have a single hidden layer is presented. By using an evolutionary programming, the network parameters such as the network structure, weight, slope of sigmoid functions and bias of nodes can be acquired simultaneously. To check the effectiveness of the suggested method, two numerical examples are examined. The performance of the identified network is demonstrated.

  • PDF

An Evolutionary Algorithm preventing Consanguineous Marriage

  • Woojin Oh;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.110.2-110
    • /
    • 2002
  • Evolutionary Algorithm is the general method that can search the optimum value for the various problems. Evolutionary method consists of random selection, crossover, mutation, etc. Since the next generation is selected based on the fitness values, the crossover between chromosomes does not have any restrictions. Not only normal marriage but also consanguineous marriage will take place. In human world, consanguineous marriage was reported to cause various genetic defects, such as poor immunity about new diseases and new environment disaster, These problems translate into searching for the local optimum, not the global optimum. So, a new evolutionary algorithm is needed that prevents traps to...

  • PDF

A Study on the Quadratic Multiple Container Packing Problem (Quadratic 복수 컨테이너 적재 문제에 관한 연구)

  • Yeo, Gi-Tae;Soak, Sang-Moon;Lee, Sang-Wook
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.125-136
    • /
    • 2009
  • The container packing problem Is one of the traditional optimization problems, which is very related to the knapsack problem and the bin packing problem. In this paper, we deal with the quadratic multiple container picking problem (QMCPP) and it Is known as a NP-hard problem. Thus, It seems to be natural to use a heuristic approach such as evolutionary algorithms for solving the QMCPP. Until now, only a few researchers have studied on this problem and some evolutionary algorithms have been proposed. This paper introduces a new efficient evolutionary algorithm for the QMCPP. The proposed algorithm is devised by improving the original network random key method, which is employed as an encoding method in evolutionary algorithms. And we also propose local search algorithms and incorporate them with the proposed evolutionary algorithm. Finally we compare the proposed algorithm with the previous algorithms and show the proposed algorithm finds the new best results in most of the benchmark instances.

The Real-time Self-tuning Learning Control based on Evolutionary Computation (진화 연산을 이용한 실시간 자기동조 학습제어)

  • Chang, Sung-Quk;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.105-109
    • /
    • 2001
  • This paper discuss the real-time self-tuning learning control based on evolutionary computation, which proves its the superiority in the finding of the optimal solution at the off-line learning method. The individuals are reduced in order to learn the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations are proposed. It possible to control the control object varied as time changes. As the state value of the control object is generated, applied evolutionary strategy each sampling time because the learning process of an estimation, selection, mutation in real-time. These algorithms can be applied, the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes.

  • PDF