• Title/Summary/Keyword: Evolutionary computations

Search Result 28, Processing Time 0.022 seconds

Design of Adaptive Fuzzy Logic Controller for Crane System (크레인 제어를 위한 적응 퍼지 제어기의 설계)

  • Lee, J.;Jeong, H.;Park, J.H.;Lee, H.;Hwang, G.;Mun, K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2714-2716
    • /
    • 2005
  • In this paper, we designed the adaptive fuzzy logic controller for crane system using neural network and real-coding genetic algorithm. The proposed algorithm show a good performance on convergence velocity and diversity of population among evolutionary computations. The weights of neural network is adaptively changed to tune the input/output gain of fuzzy logic controller. And the genetic algorithm was used to leam the feedforward neural network. As a result of computer simulation, the proposed adaptive fuzzy logic controller is superior to conventional controllers in moving and modifying the destination point.

  • PDF

Design Technique of SR Machine for Hydraulic Pump System using Combined CAD and Genetic Algorithm (유전자 알고리즘과 상용 설계도구를 이용한 유압 펌프 시스템용 SRM 설계기법)

  • Ahn, Jin-Woo;Lee, Dong-Hee;Kim, Tae-Hyoung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.369-373
    • /
    • 2006
  • In this paper, an optimal method for determining design parameters of a Switched Reluctance Motor is researched. The dominant design parameters are stator and rotor pole arc and switching on and off angle. The parameters affecting performance are examined and selected using evolutionary computations and commercial CAD program. The simulated design method is compared with conventional procedure.

Design of PI Controller for DC ServoMotor Speed Control Using Genetic Algorithm (유전알고리즘을 이용한 직류 서보 모터 속도제어용 PI제어기의 설계)

  • Park, Han-Suk;Park, Hyun-Ju;Him, Dong-Wan;Hwang, Gi-Hyun;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2111-2113
    • /
    • 2002
  • This paper proposes the design of PI controller using real-coding genetic algorithm showing a good performance on convergence velocity and diversity of population among evolutionary computations. To evaluate the proposed method's effectiveness, we apply the proposed GA-PI controller to the speed control of an actual DC servomotor system. The experimental results show that GA-PI controller has the better control performance than PI controller in terms of settling time rising time and overshoot.

  • PDF

Strategies for Evolution in Neural Networks based on Cellular Automata (셀룰라 오토마타 기반 신경 회로망의 진화를 위한 전략)

  • Jo, Yong-Goon;Lee, Won-Hee;Kang, Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2193-2196
    • /
    • 1998
  • Cellular automata are dynamical systems in which space and time are discrete, where each cell has a finite number of states and updates its states by interactive rules among the cell-neighborhood. From the characteristics of self-reproduction and self- organization, it is possible to create a neural network which has the specific patterns or structures dynamically. CAM-Brain is a kind of such neural network system which evolves its structure by adopting evolutionary computations like genetic algorithms (GA). In this paper, we suggest the evolution strategies for the structure of neural networks based on cellular automata.

  • PDF

Design of Adaptive Fuzzy Logic Controller for Speed Control of AC Servo Motor

  • Nam Jing-Rak;Kim Min-Chan;Ahn Ho-Kyun;Kwak Gun-Pyong;Chung Chin-Young
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2005
  • In this paper, the adaptive fuzzy logic controller(AFLC) is proposed, which uses real-coding genetic algorithm showing a good performance on convergence velocity and diversity of population among evolutionary computations. The effectiveness of the proposed AFLC was demonstrated by computer simulation for speed control system of AC servo motor. As a result of simulation for the AC servo motor, it is shown the proposed AFLC has the better performance on overshoot, settling time and rising time than the PI controller which is used when tuning AFLC.

Development of a New Personal Magnetic Field Exposure Estimation Method for Use in Epidemiological EMF Surveys among Children under 17 Years of Age

  • Yang, Kwang-Ho;Ju, Mun-No;Myung, Sung-Ho;Shin, Koo-Yong;Hwang, Gi-Hyun;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.376-383
    • /
    • 2012
  • A number of scientific researches are currently being conducted on the potential health hazards of power frequency electric and magnetic field (EMF). There exists a non-objective and psychological belief that they are harmful, although no scientific and objective proof of such exists. This possible health risk from ELF magnetic field (MF) exposure, especially for children under 17 years of age, is currently one of Korea's most highly contested social issues. Therefore, to assess the magnetic field exposure levels of those children in their general living environments, the personal MF exposure levels of 436 subjects were measured for about 6 years using government funding. Using the measured database, estimation formulas were developed to predict personal MF exposure levels. These formulas can serve as valuable tools in estimating 24-hour personal MF exposure levels without directly measuring the exposure. Three types of estimation formulas were developed by applying evolutionary computation methods such as genetic algorithm (GA) and genetic programming (GP). After tuning the database, the final three formulas with the smallest estimation error were selected, where the target estimation error was approximately 0.03 ${\mu}T$. The seven parameters of each of these three formulas are gender (G), age (A), house type (H), house size (HS), distance between the subject's residence and a power line (RD), power line voltage class (KV), and the usage conditions of electric appliances (RULE).

An Interactive Approach Based on Genetic Algorithm Using Ridden Population and Simplified Genotype for Avatar Synthesis

  • Lee, Ja-Yong;Lee, Jang-Hee;Kang, Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.167-173
    • /
    • 2002
  • In this paper, we propose an interactive genetic algorithm (IGA) to implement an automated 2D avatar synthesis. The IGA technique is capable of expressing user's personality in the avatar synthesis by using the user's response as a candidate for the fitness value. Our suggested IGA method is applied to creating avatars automatically. Unlike the previous works, we introduce the concepts of 'hidden population', as well as 'primitive avatar' and 'simplified genotype', which are used to overcome the shortcomings of IGA such as human fatigue or reliability, and reasonable rates of convergence with a less number of iterations. The procedure of designing avatar models consists of two steps. The first step is to detect the facial feature points and the second step is to create the subjectively optimal avatars with diversity by embedding user's preference, intuition, emotion, psychological aspects, or a more general term, KANSEI. Finally, the combined processes result in human-friendly avatars in terms of both genetic optimality and interactive GUI with reliability.

Knee-driven many-objective sine-cosine algorithm

  • Hongxia, Zhao;Yongjie, Wang;Maolin, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.335-352
    • /
    • 2023
  • When solving multi-objective optimization problems, the blindness of the evolution direction of the population gradually emerges with the increase in the number of objectives, and there are also problems of convergence and diversity that are difficult to balance. The many- objective optimization problem makes some classic multi-objective optimization algorithms face challenges due to the huge objective space. The sine cosine algorithm is a new type of natural simulation optimization algorithm, which uses the sine and cosine mathematical model to solve the optimization problem. In this paper, a knee-driven many-objective sine-cosine algorithm (MaSCA-KD) is proposed. First, the Latin hypercube population initialization strategy is used to generate the initial population, in order to ensure that the population is evenly distributed in the decision space. Secondly, special points in the population, such as nadir point and knee points, are adopted to increase selection pressure and guide population evolution. In the process of environmental selection, the diversity of the population is promoted through diversity criteria. Through the above strategies, the balance of population convergence and diversity is achieved. Experimental research on the WFG series of benchmark problems shows that the MaSCA-KD algorithm has a certain degree of competitiveness compared with the existing algorithms. The algorithm has good performance and can be used as an alternative tool for many-objective optimization problems.